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Abstract

Material graphs are commonly used in offline rendering and increasingly in real-time ren-
dering to model the look of surfaces in a flexible, programmable way that is still accessible
to artists. Using material graphs in a real-time path tracer is expensive because the path
tracer must evaluate many graphs per pixel and frame and because the evaluation is often
highly divergent for secondary rays.

In this thesis, I apply the memoization pattern to material graph evaluation in a real-time
path tracer. Memoization refers to storing the result of a function in a cache for it to be
reused in future calls with the same parameters. I build on an existing paper [FH22] that
focuses on offline path tracing of individual images.

The main challenge of implementing material graph memoization is developing a cache data
structure that supports fast and massively parallel reading and writing and uses hardware
caches well. I describe two different approaches. Both store the data as a set of virtual
textures in a hash table but the first one stores one texel per cache entry while the second
one stores small tiles. The tiled variant is more complex but enables bilinear interpolation
of cache entries and improves hardware cache locality. In both variants, cache lookup and
update are safeguarded against concurrent access. I parallelize the computation of missing
tiles in the tiled variant using wave operations. When the cache is full, an eviction strategy
decides which entries will be overwritten first. I compare three eviction strategies: random
eviction, least-recently-written and least-recently-used.

In my tests, I achieved cache hit rates of up to 99.98% and speedups of up to 680%. The
speedup is highly scene-dependent and higher for small scenes with many complex material
graphs. The tiled variant performs slightly better than the non-tiled one. Material graph
memoization results in a slight loss in image quality. Caching only secondary hits still
improves performance significantly but produces near-perfect images.
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Kurzfassung

Material Graphs werden oft im Offline-Rendering und zunehmend auch im Echtzeit-
Rendering verwendet, um das Aussehen von Oberflächen auf eine flexible, programmier-
bare Weise zu modellieren, die dennoch für Künstler zugänglich ist. Die Verwendung von
Material Graphs in einem Echtzeit-Pathtracer ist teuer, weil der Pathtracer viele Graphen
pro Pixel und Frame auswerten muss, und weil die Auswertung für Sekundärstrahlen stark
divergent ist.

In dieser Arbeit wende ich das Memoization Entwurfsmuster auf Material Graphs in einem
Echtzeit-Pathtracer an. Memoization bezeichnet das Speichern des Ergebnisses einer Funk-
tion in einem Cache mit dem Ziel, es in zukünftigen Aufrufen mit den selben Parametern
wiederzuverwenden. Ich baue auf einer exitierenden Arbeit auf [FH22], die sich auf Offline-
Pathtracing einzelner Bilder konzentriert.

Das zentrale Problem bei der Implementierung von Material Graph Memoization ist die
Entwicklung einer Cache-Datenstruktur, die schnellen und massiv parallelen, schreiben-
den und lesenden Zugriff ermöglicht und die die Hardware Caches effizient nutzt. Ich
beschreibe zwei verschiedene Ansätze. Beide speichern die Daten als virtuelle Texturen in
einer Hashtabelle, jedoch speichert der erste nur einen Texel pro Cache-Eintrag, während
der zweite kleine Kacheln speichert. Die Kachel-Variante ist aufwendiger, ermöglicht aber
bilineare Interpolation von Cache-Einträgen und nutzt die Caches der Hardware besser.
In beiden Varianten sind Cache-Lookup und Cache-Update gegen konkurrenten Zugriff
geschützt. Ich parallelisiere die Berechnung fehlender Kacheln in der Kachel-Variante
mithilfe von Wave-Operationen. Wenn der Cache voll ist, entscheidet eine Eviction-
Strategie, welche Einträge zuerst überschrieben werden. Ich vergleiche drei Eviction-
Strategien: zufällige Eviction, least-recently-written und least-recently-used.

In meinen Tests habe ich Hit-Raten von bis zu 99.98% und Speedups von bis zu 680%
erreicht. Der Speedup hängt stark von der Szene ab und ist höher in kleinen Szenen
mit vielen teuren Material Graphs. Die Kachel-Variante ist etwas schneller, als die ohne
Kacheln. Material Graph Memoization führt zu einem geringfügigen Verlust von Bildqual-
ität. Den Cache nur für Sekundärtreffer zu nutzen verbessert die Performance immer noch
signifikant, erzeugt aber nahezu perfekte Bilder.
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1. Introduction

Realistic rendering of three-dimensional scenes requires not only a model of the geometry
in the scene but also a model of how light interacts with the surface of each object. For a
single surface point, this interaction is modeled by a bidirectional reflectance distribution
function (BRDF). A separate problem is describing how the BRDF varies over the sur-
face of an object. Many surfaces are not perfectly homogenous but have spatially varying
reflective properties. For example, wooden surfaces typically have characteristic patterns
of darker and brighter areas from the annual rings of the tree. Aside from such intrinsic
variation, many surfaces have impurities, smudges or scratches. Including this variation
in the geometric model is possible in theory but requires a very detailed geometric model,
which is difficult to create and expensive to render. Instead, the traditional way of describ-
ing these phenomena is by mapping 2D raster textures to the surface of an object. These
can for example be captured from the real world or drawn by an artist. However, as with
other parts of a 3D rendering pipeline, making the appearance of a surface programmable
provides more flexibility and is desirable for both artistic and technical reasons.

Material graphs are a flexible and artist-friendly way of modeling the look of a surface in
3D rendering programmatically. They are widely used in offline rendering and increasingly
in real-time rendering as well, for example in Unity with Shader Graph [Uni23] or in the
Unreal Engine with the Material Editor [Epi23]. Material graphs provide an intuitive,
high-level mechanism for describing materials, that is decoupled from the more technical
parts of 3D rendering. Nodes in a material graph represent operations and constants.
A node can take several inputs and produce several outputs. The flow of values from
output to input sockets is represented by the edges of the graph. While it is generally
desirable to give artists more control and flexibility in how they design materials, it also
comes at the risk of a severe performance impact. Fully or partially procedural materials
can be much more expensive to evaluate than simply sampling a single texture per BRDF
parameter. By hiding the complexity of procedural texturing, material graphs also hide its
cost. This problem becomes even more relevant if a real-time path tracer is used instead
of rasterization-based techniques. Due to the recursive nature of a path tracer, material
graphs may be evaluated many times per frame and pixel. Furthermore, random sampling
in a path tracer is likely to cause divergent branching as secondary rays hit different
materials.

One very general approach for improving the performance of certain functions is the memo-
ization pattern. This pattern stores the results of frequently evaluated functions in a cache
indexed by the function parameters so that subsequent calls with the same parameters do
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2 1. Introduction

not need to evaluate the function again. Memoization has successfully been used in combi-
nation with offline path tracing of individual images [FH22]. While the same approach can
be used for real-time path tracing as well, there is still room for improvement. A common
strategy in real-time path tracing is to make use of temporal continuity by reusing results
from previous frames. Similarly, a cache that persists across frames combined with an
effective eviction strategy has the potential to significantly improve performance as there
is often a great deal of overlap between surface points visible in consecutive frames.

Compared to memoization on a CPU, implementing memoization in a GPU path tracer
introduces some additional challenges and additional design decisions must be made. The
cache data structure must support massively parallel reading and writing while keeping the
content consistent. GPU performance also relies on the effective use of hardware caches
as global memory bandwidth is a common bottleneck. Furthermore, like all GPU code,
an efficient implementation should avoid divergent branching to make better use of SIMD
parallelism.

In this thesis, I explore and compare different variants of material graph memoization
in the context of real-time path tracing. I group the variants into one group that stores
individual texels of virtual textures in a hashtable-based cache, and another one that works
similarly but stores small tiles of texels. The more complex, tile-based approach enables
bilinear filtering of cached values and has the potential to improve the locality of memory
accesses. A central question is whether these advantages justify the higher complexity and
overhead. I also compare different eviction strategies as well as different memory layouts
for the tile-based approach. Eviction strategies differ in their computational overhead and
additional memory usage and in how accurately they predict the reuse of cache entries.
The choice of memory layout for the tile-based approach affects the locality of memory
reads and thereby how well hardware caches are used.

I begin by providing context and groundwork for the techniques presented later, followed by
an overview of related work. Then I describe the core ideas of my memoization techniques,
followed by more detailed chapters on the implementation of the different variants, first
for the non-tiled and then for the tile-based variants. Finally, I evaluate and compare the
performance of the presented techniques and conclude with recommendations for their use
as well as potential paths for further research.
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2. Context and Groundwork

The memoization techniques that I present in this thesis are designed as one component
of a real-time path tracer. This chapter provides an overview of some techniques and
theoretical background that I use in my implementation and that I will refer to throughout
the thesis. I begin with a brief explanation of path tracing and my choice of BRDFs. I
also cover ray cones as an important building block for real-time path tracing in general
and material graph memoization in particular. I explain the concept of a material graph
as well as the generic optimization pattern of memoization. Finally, I give an overview of
some relevant aspects of graphics hardware and APIs that I use in my techniques or that
influenced their design.

2.1 BRDFs and Path Tracing
Rendering realistic images requires simulating how light interacts with a scene. The first
step for this is to describe how light interacts with a single surface point. Surface points
can emit light as well as reflect or transmit incoming light. The rendering equation [Kaj86,
PJH16] describes these interactions:

Lo(x, ωo) = Le(x, ωo) +
∫

S2
f(x, ωo, ωi)Li(x, ωi)| cos θi|dωi (2.1)

• x is the surface point,

• Lo(x, ωo) is the outgoing radiance from x in direction ωo,

• Le(x, ωo) is the radiance emitted by x in direction ωo,

• S2 is the unit sphere (or hemisphere for opaque surfaces), i.e. the set of all directions
of incoming light,

• f(x, ωo, ωi) is the bidirectional reflectance distribution function (BRDF),

• Li(x, ωi) is the incoming radiance at x from direction ωi,

• θi is the angle between the surface normal and ωi.

For simplicity, I assume all surfaces to be opaque in this thesis, i.e. I assume transmission
of light through a surface to be zero. Le is an inherent property of the surface point and
non-zero only if x is a light source. As explained in more detail later on, Li is approximated
by a path tracer via ray tracing and recursive evaluation of the rendering equation at the
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4 2. Context and Groundwork

first ray intersection. Various models are used for f . In the simplest possible case, f is
constant:

fLambert(ωo, ωi) = fLambert = kd

π
(2.2)

• kd ∈ [0, 1] is the diffuse color of the surface.

This models diffuse reflection on a perfectly smooth surface and is known as Lambertian
reflection [PJH16]. I use this as an approximation for all diffuse reflection, though more
accurate models for diffuse reflection on rough surfaces exist as well. I use the GGX BRDF
to model specular reflection on rough surfaces. GGX is a microfacet BRDF, i.e. it models
the surface as a collection of microscopic facets with a certain statistical distribution. The
general form of a specular microfacet model is as follows [WMLT07]:

f(x, ωo, ωi) = F (ωi, ωh)G(ωi, ωo, ωh)D(ωh)
4|ωi · ωn||ωo · ωn|

(2.3)

• ωn is the normal vector,

• ωh = ωi+ωo
∥ωi+ωo∥ is the half-vector,

• F (ωi, ωh) is the Fresnel term,

• G(ωi, ωo, ωh) is the shadowing-masking term,

• D(ωh) is the microfacet distribution.

The Fresnel term F describes how much radiance is reflected (as opposed to transmitted)
at the boundary between two materials. More light is reflected at grazing angles. I use
Schlick’s approximation [Sch94]:

FSchlick(ωi, ωh) = F0 + (1 − F0)(1 − ωi · ωh)5 (2.4)

F0 is the reflection coefficient for ωi = ωo = ωh. It can either be computed from the indices
of refraction or chosen artistically as the “specular color” of the surface.

The masking-shadowing term G describes what portion of the microsurface is shadowed
(occluded by other microfacets as seen from ωi) or masked (occluded by other microfacets
as seen from ωo). I use the separable Smith joint masking-shadowing function [Hei14].

GSmith(ωi, ωo, h) = G1(ωi, ωh)G1(ωo, ωh) (2.5)

G1(ω, ωh) = 2|ωn · ω|χ+(ωh · ω)
|ωn · ω| +

√
α2 + (1 − α2)(ωn · ω)2 (2.6)

• α ∈ [0, 1] is the roughness of the surface,

• χ+(x) =
{

1 x > 0
0 x ≤ 0

is the Heaviside function.

The microfacet distribution D is the probability density of microfacet normals. Evaluating
it at ωh gives the differential probability that light from direction ωi is reflected in direction
ωo. The GGX microfacet distribution is as follows [WMLT07]:

DGGX(ωh) = α2χ+(ωn · ωh)
π((ωn · ωh)2(α2 − 1) + 1)2 (2.7)

Evaluating the rendering equation requires calculating an integral over the unit sphere or
hemisphere. One term in the integrand is the incoming radiance Li. In a path tracer,
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2.2. Ray Cones 5

Li(x, ωi) is calculated by tracing a ray from x in direction ωi and evaluating the rendering
equation recursively at the first intersection with the scene. However, this can only be
done for a finite number of directions. The integral is therefore approximated with Monte
Carlo integration.

Monte Carlo integration is a randomized numeric integration algorithm. It involves sam-
pling random points in the integration domain and evaluating the integrand function at
these points. The expected value of the function is then given by another integral, which
is approximated by a sum over a finite number of samples [SM09]:

E [f(X)] =
∫

A
f(x)p(x)dµ(x) ≈ 1

N

N∑
i=1

f(xi) (2.8)

• A is a domain,

• f is a function defined on A,

• µ(x) is a measure on A,

• p is a probability density on A,

• X is a random variable in A with probability density p,

• x1, x2, . . . , xN are instantiations of X

By the law of large numbers, this approximation converges almost certainly towards the
correct value for large N . By rearranging this formula, the original integral over f is
approximated similarly: ∫

A
f(x)dµ(x) ≈ 1

N

N∑
i=1

f(xi)
p(xi)

(2.9)

The expected value of this approximation is the value of the integral but the approximation
contains some variance, which is visible as noise in images generated by a path tracer.
Importance sampling is an important technique for reducing the variance. Importance
sampling refers to choosing a probability density p that is approximately proportional to
f . As an edge case, if p is proportional to f then f(x)

p(x) is constant and the approximation
is exact.

To apply this algorithm to the global illumination problem, directions of incoming radiance
at a surface point are sampled from the unit sphere or hemisphere and the rendering
equation is evaluated recursively for the closest surface points in the sampled directions.
Importance sampling is possible in various ways, for example by using a distribution that
is proportional or approximately proportional to the BRDF or by sampling directions
towards light sources with a higher probability.

The path tracer I wrote for this thesis is relatively simple in that it only supports point
lights and decouples direct lighting from indirect lighting. For direct lighting, I sample
from the finite set of point lights in the scene. For indirect lighting, I use BRDF importance
sampling.

2.2 Ray Cones
High-frequency features in textures lead to aliasing artifacts when a texture is viewed from
far away. A widely used solution to this problem is mipmapping [Wil83]. Mipmapping
refers to providing a set of additional versions (mipmap levels) of a texture with expo-
nentially decreasing resolution. The lower-resolution versions only contain low-frequency
features. When a texture is sampled, the renderer decides dynamically which version of

5



6 2. Context and Groundwork

the texture is appropriate for the current sampling density. In rasterization-based render-
ing, this is approximated by the numerical derivatives of the texture coordinates in screen
space. The length of these derivatives approximately describes the footprint of a pixel in
texture space. The renderer then chooses a mipmap level where the pixel has a footprint
of approximately one texel. The numerical derivatives are calculated efficiently using the
texture coordinates at adjacent pixels.

In path tracing, no numerical screen-space derivatives are readily available but mipmap-
ping is still beneficial. While aliasing artifacts are reduced by the Monte Carlo integra-
tion, aliasing still increases the variance and thereby the visible noise in the final image.
Mipmapping is also important for the caching techniques I present in this thesis because
using a lower resolution and thereby fewer texels where appropriate translates to more
cache hits. Ray cones [AMCB+21] are a technique for computing approximate derivatives
of texture coordinates that is compatible with path tracing. When using ray cones, rays
used in path tracing are conceptually extended to cones that increase in thickness along
the ray. This representation allows computing the approximate footprint of a pixel in a
texture based on the width of the cone at the intersection. Intersections with the scene are
still determined with ray tracing, ignoring the cone width. Primary rays have an opening
angle corresponding to the size of one pixel on the screen. When a ray is reflected by a
surface, the width and opening angle of the cone is carried over to the new ray and the
opening angle is increased based on the curvature and roughness of the surface that was
hit.

The width of a ray cone at an intersection is calculated using the small angle approxima-
tion:

wnew = wold + αt (2.10)

• wnew is the width of the ray cone at the intersection,

• wold is the width of the ray cone at the last surface interaction or zero for primary
rays,

• α is the opening angle of the ray cone,

• t is the distance of the intersection along the ray.

The new opening angle after a surface interaction is calculated as αnew = αold + βr + βc,
where βr describes the spread caused by the roughness of the surface and βc describes the
spread caused by the curvature of the surface. For GGX, βr is calculated as follows:

βr = 2
√

α2
GGX

2 − 2α2
GGX

(2.11)

• αGGX is the roughness parameter of the GGX BRDF.

The approximate spread angle from curvature is calculated as follows:

βc = −2k
w

n · d
(2.12)

• k is the curvature of the surface,

• n is the normal of the surface,

• d is the direction of the ray.

To compute derivatives of vertex attributes from a ray cone, an approximate elliptical
footprint of the cone on the surface is determined by locally approximating the cone with
a cylinder and the surface with a plane. The points of the ellipse that are furthest from

6



2.3. Material Graphs 7

Figure 2.1: A ray (black), the corresponding ray cone (blue) and its approximate elliptical
footprint (red). P1 and P2 are a vertex and a co-vertex of the ellipse and are
used for computing derivatives.

its center along its major and minor axis are called its vertices and co-vertices respectively
and are computed as follows:

h1 = ProjectOnPlane(d, n) (2.13)

h2 = n × h1 (2.14)

P1 = P + h1r

∥ProjectOnPlane(h1, d)∥ (2.15)

P2 = P + h2r

∥ProjectOnPlane(h2, d)∥ (2.16)

• ProjectOnPlane(v, n) = v − (v · n)n,

• P is the ray intersection and center of the ellipse,

• P1 is a vertex of the ellipse,

• P2 is a co-vertex of the ellipse.

Values of vertex attributes at these points are obtained via barycentric interpolation.
These values at the vertices and co-vertices are then used to compute two numerical
derivatives of the vertex attribute. This is similar to how the values of adjacent pixels are
used to compute numerical derivatives in rasterization-based renderers and the derivatives
can be used in the same way for mipmapping and anisotropic filtering.

2.3 Material Graphs
Describing real-world materials such as stone or wood requires not just a local illumination
model but also a description of how the reflective properties, such as roughness or albedo,
vary across the surface. One way of doing this is by mapping 2D textures onto an object
to supply parameters to a BRDF. A more flexible way is to describe it programmatically

7



8 2. Context and Groundwork

Figure 2.2: An example material graph from the Classroom scene in the Blender Shader
Editor [Ble23].

in a shader. This can for example involve sampling one or multiple textures, distorting
texture coordinates, evaluating noise functions and other procedural patterns as well as
blending colors and other values in various ways. An advantage of this approach is that
it allows creating materials with a great deal of variation with lower memory usage than
a single large texture. Disadvantages include that complex materials are more expensive
to evaluate and that writing shaders in text-based programming languages is not very
artist-friendly. The latter is addressed by material graphs. Material graphs are a type
of visual scripting that decouples material description from more technical aspects of
shader programming. Material graphs follow the dataflow programming paradigm. They
are usually translated to an imperative, text-based shading language such as HLSL or
GLSL before being used in a renderer. The nodes of a material graph represent constant
values and operations, such as sampling a texture, while the edges describe the flow of
values between nodes. Material graph systems differ in how they treat BRDFs. For
example, in the Blender Shader Editor [Ble23] (figure 2.2), BRDFs are simply nodes that
can be combined in various ways. Unity Shader Graphs [Uni23] on the other hand only
supply BRDF parameters to a single active target that handles all lighting calculations.
I implemented my own material graph system backend following the latter approach for
this thesis, which I describe in section 5.1.

2.4 Memoization
Memoization is a general pattern for improving the performance of commonly used func-
tions. The core idea is that once a function has been evaluated, its result should be kept
in memory in case it is needed again later. Subsequent calls of the same function with
the same parameters return the value stored in memory instead of executing the function.
If the function has parameters, multiple values must be stored in a cache data structure
indexed by the parameters. The return values of the function must also depend exclusively
on a known set of parameters and the function must not have side effects (i.e. the function
must be pure). If the return value cannot be derived exclusively from the parameters, then
storing them is not useful because the stored value would not necessarily be the correct
one for a subsequent call with the same parameters. If the function has side effects, then
it must be evaluated anyway to ensure that these side effects occur. Trivial examples of
functions that cannot be memoized are a function that returns a random number or one
that writes a value into a log.

8



2.5. Relevant Aspects of Graphics Hardware and APIs 9

If querying the cache is faster than evaluating the function, then calls where the value is
already cached evaluate faster than without memoization. However, querying the cache
before evaluating the function and storing the result after evaluation slows down function
calls where the value was not already cached. For memoization to be effective, looking up
and storing values should therefore be significantly faster than evaluating the function and
function values should be reused frequently. The speedup is described by the following
formula:

S = (Tf + Tr + Tw) · (1 − h) + Tr · h

Tf
(2.17)

• S is the speedup achieved by using memoization,

• Tf is the average time required to evaluate the function,

• Tr is the average time required for looking up a value in the cache,

• Tw is the average time required for writing a value to the cache,

• h is the probability of a cache hit.

A natural choice for the cache data structure is a hash table as it allows lookups in expected
constant time. A hash table stores key-value pairs. Internally it uses an array to store the
pairs. The index of a pair is given by a hash of its key. Implementations differ in how they
treat hash collisions, i.e. in how they store multiple key-value pairs with the same hash.
One approach is to store a linked list of key-value pairs at each index in the hash table.
Another is linear probing, which searches the array linearly for a free index, starting at
the index given by the hash. It is also possible to store a fixed-size array for each index
in the hash table since the cache used for memoization is often limited in size anyway to
prevent it from growing indefinitely. Regardless of which one of these approaches is used,
if the cache is to be limited in size, decisions must be made on which values should be
stored in the cache and when they should be overwritten. These decisions are made by
an eviction strategy. Some general eviction strategies are used, such as the least recently
used strategy, which dictates that whenever a value is to be stored in a full cache or a
full section of a cache, the value that was used the least recently is to be overwritten with
the new value. In addition to such generic strategies, it is also possible to use high-level
domain knowledge about the function or the code that uses it in an eviction strategy.

2.5 Relevant Aspects of Graphics Hardware and APIs
Modern GPUs are complex, highly parallel processors with various hardware and firmware
components designed to accelerate workloads commonly needed in computer graphics.
Understanding their architecture and the APIs that expose it to the user is vital for
implementing efficient path tracing with memoization.

2.5.1 SIMD Architecture
GPUs process data in many threads that are executed in parallel. The threads are or-
ganized in small groups of e.g. 32 threads [NVI09] called waves, wavefronts, warps or
subgroups. I will use the term wave in this thesis. Waves are executed on SIMD processing
units. The threads within a wave are executed in parallel using the SIMD approach. This
means that all threads in a wave execute the same code paths at the same time on different
sets of data. While the execution of a branch can be masked per thread to emulate per-
thread branching, divergent branching is still a performance concern as masked threads
have to wait for the branch to be completed instead of doing useful work. Multiple SIMD
units can execute different waves in parallel. Furthermore, multiple waves can be in flight
on a single SIMD unit. While only one of them is active, the unit can switch between
them to hide long latencies, caused, for example, by global memory reads.

9
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2.5.2 Wave Operations
The organization of threads in waves is mostly opaque to the shader programmer. How-
ever, newer versions of graphics APIs like Vulkan and DirectX provide instructions for
efficient communication between the threads of a wave [Hen18, WBC+21]. These include
instructions for querying the wave size, reading values from other threads, and aggregation
instructions such as the sum or the minimum of a value across the wave. In HLSL, they are
represented by intrinsic functions with the prefix Wave, such as WaveGetLaneCount, Wa-
veReadLaneAt, or WaveActiveMin. These instructions are useful for redistributing work
within a wave in a way that makes better use of SIMD parallelism. For example, if a
shader requires evaluating a function a varying number of times, the evaluations in a wave
can be distributed evenly among the threads of the wave.

2.5.3 Atomic Operations and Synchronisation
GPU threads can read and write global memory concurrently. This can result in race
conditions. For example, attempting to append a value to a list from two threads at the
same time may result in one thread overwriting the value written by the other one. To
alleviate this problem, GPUs provide instructions to perform various operations atomi-
cally [WCJS20]. In HLSL, these are represented by intrinsic functions with the prefix
Interlocked, such as InterlockedAdd, InterlockedMin or InterlockedExchange. While only
relatively simple operations can be performed atomically, they can be used to implement
synchronization primitives and thereby eliminate race conditions for more complex tasks.
For example, to implement a mutex, a thread uses InterlockedExchange to swap a value
in a buffer with a value indicating that the mutex is locked. The value obtained from
the buffer indicates to the thread whether it was the first thread to attempt locking the
mutex.

2.5.4 Hardware Cache Hierarchy
Like most modern processors, GPUs employ a hardware cache hierarchy [NVI09] to speed
up memory accesses that follow certain patterns. While this is always the case, even
without the software caching techniques that I describe in this thesis, hardware cache
locality should be considered for implementing an efficient software cache. Shader variables
are typically stored in registers but when a shader attempts to read from a memory object,
such as a texture or a buffer, the GPU will first query its caches for the requested value.
The caches are organized in cache lines representing a small section of adjacent memory
addresses. Reading the same amount of data from adjacent or nearby addresses is therefore
faster than reading it from addresses that are spread over a larger section of memory. The
caches are shared between multiple threads. In particular, the L1 cache is shared between
the threads on one SIMD processing unit while the L2 cache is a single cache shared
between all threads. This means that cache locality should not only be considered for
consecutive memory reads within a thread but also among the threads in a wave or even
globally. Graphics APIs provide different ways of making graphics memory available to
shaders for different use cases. These include structured buffers as well as 1D, 2D and 3D
textures. Choosing one of these indicates to the GPU driver what kinds of memory access
patterns are to be expected. For example, accesses to a 2D texture should be expected to
be local in the 2D texture space. This enables the GPU to use a memory layout that makes
better use of the hardware cache. The exact memory layout used internally is opaque to
the shader programmer.

2.5.5 Ray Tracing Hardware and APIs
Modern GPUs have dedicated hardware for parallelized ray tracing, which can for example
be used via the DirectX Raytracing API (DXR) [Cor23]. DXR defines two ways of using
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hardware-accelerated raytracing. One option is to write a set of ray tracing shaders to be
executed as part of a ray tracing pipeline. The entry point of a ray tracing pipeline is a ray
generation shader. From within the ray generation shader, rays can be traced through an
acceleration structure via an opaque instruction (TraceRay in HLSL). For each intersection
with the scene or only the first one depending on the configuration, the GPU then invokes a
hit shader that has access to information about the intersection, such as the primitive index
or the barycentric coordinates of the intersection with a triangle. A payload struct can be
used to pass input and output parameters between the caller and the callee. Hit shaders
may also trace additional rays recursively. Different objects in the scene can be associated
with different hit shaders to allow for material-specific code. Even though no explicit
branching instruction is used, invoking the correct hit shader still involves branching.
While evaluating one hit shader, threads that hit an object associated with a different hit
shader are inactive. The other way of using ray tracing hardware is via ray queries. When
using ray queries, only a single shader participates in ray tracing. This can be a compute
shader or a fragment shader. Similarly to the ray tracing pipeline, the shader can trace
rays with an opaque instruction but the information about the intersection is returned
to the same shader instead of passed to a separate hit shader. Explicit branching is
necessary to execute material-specific code. For both approaches, the user must first create
an acceleration structure that is stored in graphics memory and contains all information
about the scene that is necessary for ray tracing.
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3. Related Work

My material graph memoization techniques are related to multiple groups of other tech-
niques. First, memoization has been used for other purposes in path tracing. Second,
memoization has been used to memoize final shading results in rasterization-based render-
ers. Third, my memoization cache acts as a set of virtual textures and therefore has some
things in common with various virtual texturing techniques. Finally, the paper “Progres-
sive Material Caching” [FH22] was the main inspiration for this thesis and describes a
similar technique in the context of an offline path tracer. In this section, I discuss some
of these techniques and their similarities with and differences to my techniques.

3.1 Other Applications of Memoization in Path Tracers
Memoization and caches are used in various ways to accelerate path tracing. An early ex-
ample is irradiance caching [WRC88], which interpolates between and extrapolates from
cached samples of diffuse irradiance to avoid the expensive Monte Carlo integration over
the entire hemisphere. The cache is an octree with adaptive resolution to represent both
high and low-frequency areas efficiently. Radiance caching [KGPB05] extends the tech-
nique to glossy reflection by caching the spherical or hemispherical radiance function at a
surface point. A more recent variant of radiance caching [MRNK21] uses a neural network
as the cache data structure. Visibility caching [PGSD13] uses a hashtable-based cache to
memoize point-to-point visibility.

These techniques have in common that their main goal is to reduce the number of rays
that need to be traced. By contrast, my techniques reduce the cost of material graph
evaluation, which is a separate but in some scenes significant part of the total cost of path
tracing.

3.2 Memoization of Final Shading Results
Memoization has also been applied to the final shading results in rasterization-based real-
time rendering. This also includes material graph evaluation if material graphs are used.

Decoupled sampling [RKLC+11] reuses shading results in multiple visibility samples to
reduce shading times when many visibility samples per pixel are generated for antialiasing
or effects like motion blur and defocus blur. The technique memoizes shading results in
a hashtable-based cache. Before shading is performed for a visibility sample, the cache
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is queried and the cached shading result is used on a cache hit. Visibility samples have
a position (x, y) on the screen, a position (u, v) on the lens and a time parameter t. To
compute the cache key, they are projected to the screen position where the same surface
point is visible in the center of the lens at the beginning of the exposure interval and then
snapped to the closest pixel. That way, multiple visibility samples are mapped to the
same cache key, which enables reuse. Decoupled sampling is related to my material graph
memoization in that it memoizes the results of per-fragment operations in a hash table. An
important difference to the techniques I describe is that the final, view-direction-dependent
shading result is cached and cache entries are therefore not reused over multiple frames.

Caching of fragment shader results has also been proposed in the form of a hardware
cache in mobile GPUs [APX14]. A single output color per fragment shader is stored in a
set-associative cache indexed by a hash of the fragment shader inputs. To increase reuse,
the eight least significant bits of the mantissa of a float input are ignored. Redundant
fragments were found to occur mostly across consecutive frames and rarely within the
same frame. This makes the cache ineffective in conventional GPUs because frames are
too large and therefore the reuse distances too high for the relatively small hardware cache.
However, in GPUs with parallel frame rendering, the reuse distances were found to be much
lower and the cache enables the reuse of fragments across two frames that are processed
in parallel. In principle, caching the final fragment color should hinder temporal reuse but
mobile games often use 2D graphics or view-direction-independent shading, which makes
this less of a concern.

3.3 Virtual Texturing and Memoization of Procedural Tex-
tures

Another group of techniques related to material graph memoization are techniques that
sparsely cache textures in graphics memory either to reduce the cost of procedural textures
or to reduce the graphics memory usage of large textures.

Shadermaps [JPC00] are a technique for accelerating procedural texturing. They require
manually splitting a shader into a static and a dynamic phase. The static phase consists
of computations that are likely to be reused across frames while the dynamic phase con-
tains the remaining, typically view-direction-dependent computations, such as evaluating
BRDFs. The results of the static phase are generated on-demand and stored in small tiles
in a sparse mipmap, which acts as a cache indexed by texture coordinates. This is con-
ceptually similar to the tile-based cache that I describe in this thesis. Shadermaps were
found to enable around 95% reuse of the data produced by the static phase. The authors
do not explain in detail how the sparse mipmap is implemented. In particular, they do
not mention hash tables as a possible implementation. Shadermaps were described as a
technique for offline rendering on CPUs. My thesis focuses on the implementation of a
hashtable-based cache in the context of real-time GPU path tracing. My techniques do
not require explicitly separating the static and dynamic phases but the representation as
a material graph with a single, known BRDF implies such a separation.

Another system using a tile-based cache is unified texture management for arbitrary meshes
as proposed by Lefebvre et. al. [LDN04]. The main goal of the system is to reduce the
required graphics memory for large textures by storing only the currently needed parts
of each texture. The system consists of three components: a texture load map, a texture
cache and a texture producer. The texture load map determines which tiles of each texture
are needed for the next frame. This is done by rasterizing scene objects in texture space
with a resolution of one pixel per tile. The texture cache stores the currently active
tiles. It consists of a tile pool containing the actual texture data and an indirection
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grid for each texture that maps tile coordinates to tile pool entries. Finally, the texture
producer is responsible for loading the tiles requested by the texture load map. The texture
producer can also decompress data or evaluate procedural textures. One key difference
to my techniques is that the required tiles are determined before rendering of the current
frame begins, which is more challenging in a path tracer. Another is the use of multiple
indirection maps instead of a single hash table.

A recent paper [ZCJE22] that focuses on texture streaming in geographic information sys-
tems presents a technique that automatically groups nearby and similarly oriented prim-
itives into texture atlases in a preprocessing step and then streams them from secondary
memory (e.g. hard drives) into a sparse texture on the GPU. The streaming workload per
frame is adapted to measured frame latencies to prevent stuttering. The system uses a
perceptual importance metric calculated in the fragment shader to prioritize the stream-
ing of textures that have a great influence on the overall look of the image. The paper
is less closely related to my techniques because it focuses on streaming textures from sec-
ondary memory while my techniques fill virtual textures directly on the GPU by evaluating
material graphs.

3.4 Progressive Material Caching
The techniques I present in this thesis are inspired by and can be viewed as an extension
of progressive material caching [FH22]. Progressive material caching improves the per-
formance of a path tracer by caching the outputs of nodes of a material graph. Values
are stored in a sparse virtual mipmapped texture. The data structure used for this is a
hash table indexed by node id, texture coordinates and mipmap level. View-direction-
dependent nodes are not cached. Contrary to my version of material graph memoization,
values are only reused within one frame and no eviction of cache entries is performed. This
makes the technique more suitable for offline path tracing with many samples per pixel
and frame as opposed to real-time path tracing.
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4. Material Graph Memoization

The goal of the techniques in this thesis is to improve the performance of a real-time
path tracer by reducing the time required to evaluate material graphs. A material graph
must be evaluated for each ray hit and ultimately results in a BRDF that is then used
to compute direct and indirect lighting. If BRDF importance sampling is used then the
BRDF is required before tracing the next ray, which means that ray tracing and material
graph evaluation are interlaced. Especially for secondary hits, material graph evaluation
requires divergent branching as the randomized secondary rays hit different objects with
different materials. Evaluating potentially complex material graphs divergently for each
ray hit is a significant factor for the overall performance of the path tracer. Material graph
memoization alleviates this problem by caching material graph outputs for future reuse.

4.1 Redundancy of Material Graph Evaluations
Two rays almost never hit exactly the same point and each point can produce a different set
of material graph outputs. However, evaluating material graphs at a limited resolution is
sufficient to render realistic images and ray cones provide a way of estimating the required
resolution at each hit, similar to how they estimate the required texture resolution when
used to select a mipmap level. Assuming this limited resolution given by ray cones, some
material graph evaluations are redundant and can be prevented by storing and reusing
the graph outputs. Furthermore, temporal continuity can be used to reduce material
graph evaluations significantly as most points that are visible in the current frame (via
primary or secondary rays) were likely already visible in previous frames. Especially when
only relatively few paths per pixel are traced due to hardware limitations, temporal reuse
becomes the main motivation for using a material graph cache. An important nuance is
that while the set of relevant points for the entire frame exhibits a great deal of temporal
continuity, the mapping of these relevant surface points to pixels is often a very chaotic
one (depending on the roughness of the surfaces) due to the random sampling in the path
tracer. This motivates a global approach for temporal reuse as opposed to a technique
based on temporal reprojection.

4.2 Basic Structure of Material Graph Memoization
Using a material graph cache means that threads will traverse one of two different code
paths for each ray hit (figure 4.1). Threads that had a cache hit read the material graph
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Figure 4.1: Abstract overview of material graph memoization in a path tracer. Threads
processing a ray hit take one of two code paths depending on whether the
point is already in the cache or not. On a cache hit, the thread reads the
graph outputs from the cache. On a cache miss, the thread evaluates the
graph and writes its outputs to the cache.

outputs from the cache and continue directly with shading. Threads that had a cache
miss must first evaluate the material graph and then write the results into the cache be-
fore continuing with shading. At first glance, it may seem unwise to introduce additional
divergent branching. However, because material graph evaluation is already highly di-
vergent by itself, using a cache actually reduces divergence in scenes with many different
materials. All threads that had a cache hit take the same code path while they would
otherwise potentially take different ones to evaluate different material graphs.

Two important questions for designing a material graph cache are which values should
be stored and by what keys they should be referred to. The relevant information gained
from evaluating a material graph are mainly the emission and the BRDF. Storing an entire
BRDF in a generic form would be expensive but material graphs typically use a fixed set of
one or multiple parameterized BRDFs and only the parameters vary within the material.
It is therefore sufficient to store the parameters of the BRDFs in the cache to obtain the
same BRDF without reevaluating the entire graph. Typical parameters are roughness or
base color. Additionally, emission should be cached, as well as normals if normal mapping
is used.

Choosing appropriate keys for referring to values in the cache is not a trivial task because
material graphs can receive a wide variety of input values. These include, for example,
texture coordinates, surface normal, vertex colors, view direction, current time (for ani-
mated materials) and object id. The key should be chosen in such a way that two points
with the same key also have identical output values, i.e. the relation of keys and values
should be right-unique. On the other hand, the key should be small and fast to compute
for performance reasons. It is also better for performance to calculate the key in the same
way for all materials as it avoids divergent branching but that is not strictly necessary.

Vertex attributes do not vary completely independently. In particular, if there is no overlap
in texture space, the relation of texture coordinates and any other vertex attribute is right-
unique. In that case, including other vertex attributes in the key is unnecessary. In most
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Ray hits in scene Texels in virtual textures Cache entries

Figure 4.2: Organisation of the material graph cache as sparse, virtual, mipmapped tex-
tures. A ray hit in the scene is first mapped to a texel in a mipmap level of a
virtual texture. Each virtual texture corresponds to one material graph. The
mipmap level is determined by the ray cone footprint. The texels are then
mapped to cache entries using a hash function. The virtual textures only exist
as a conceptual intermediate step, not as separate objects in memory.

situations where UV coordinates do overlap, it is easy to prevent by instead repeating the
texture space and mapping overlapping primitives to different copies of a texture. For
example, while one may choose to use only a single leaf texture for a tree, the leaf texture
can simply be set to repeat infinitely in texture space and each leaf can be mapped to a
different instance of the same texture. Time dependency is a problem for material graph
caching. While including the current time in the key is possible, it would significantly
reduce the potential for reuse as values would never be reused across multiple frames.
However, time dependency is rare and excluding animated materials from memoization is
simple. View direction dependency mostly occurs when BRDFs are evaluated as part of the
graph. However, even in systems that do represent BRDFs as nodes, BRDF evaluation and
sampling can usually be cleanly separated into a second phase after the rest of the graph
has been evaluated. For example, in Blender shading graphs, BRDFs can be combined
with other nodes but no node produces a scalar, vector or color from a BRDF. It is
therefore always possible to first compute all BRDF parameters and then feed them to
a second graph containing all BRDFs. With these considerations, I decided to include
texture coordinates and material id but no other graph inputs in the key.

4.3 Organisation of the Cache as Virtual Textures
As mentioned in section 4.1, it is necessary to limit the resolution of the cache based on ray
cone footprints to enable reuse. This is achieved by treating the cache as a set of sparse,
virtual, mipmapped textures (figure 4.2). Each cache entry represents one texel. The
mipmap level is determined with ray cones and must be part of the cache key. To sample
the virtual texture with nearest-neighbor filtering, the cache key is rounded to the nearest
point on the texel grid. It is worth noting that this is still possible if other vertex attributes
are also included in the key. Derivatives for all vertex attributes can be derived from ray
cones and mipmapping works for any number of dimensions. The sparse texel storage
makes high-dimensional virtual textures relatively unproblematic since the surface of an
object is still a 2D space and only texels on the surface are stored. Better texture filtering
than nearest-neighbor is not efficient in this variant. In principle, one could perform a
separate cache lookup for each required texel. For example, bilinear filtering would result
in four cache lookups. However, this makes using the cache significantly more expensive
while also reducing the probability of a cache hit because all required texels must already
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be cached. I also describe a different variant using a tile-based cache (section 4.6) that
solves these problems.

Even storing only texture coordinates, material id and mipmap level in the key would
already require a substantial amount of memory relative to the size of the payload. Fur-
thermore, comparing large keys is a problem for the performance of cache lookups. Smaller
keys also have the advantage that they can be read atomically, which prevents race con-
ditions without explicit synchronization. A simple way of reducing the size of the key to
any desired size is by hashing it. This introduces the risk of false cache hits as a result of
collisions in this hash function. While one may be tempted to use the same hash as was
used to determine the location in the hash table, computing a second hash with a different
hash function reduces the probability of false cache hits because both the location in the
hash table and the second hash of the key must match. This is rare enough even with
relatively short keys of 32 bits to not noticeably affect image quality.

4.4 Hash Table as Cache Data Structure
I use a hash table as the cache data structure. Hash tables are a good fit for this use
case for several reasons. First, they allow lookups in expected constant time. This is vital
because the cache must store several million entries and cache lookups must be significantly
faster than evaluating the material graph for the cache to be effective. Furthermore, the
flat internal structure of hash tables makes them well-suited for concurrent reading and
writing. Writing an entry in a hash table affects only one small section of memory. This
makes synchronization relatively simple and efficient.

With realistic cache sizes, it is common for multiple entries to be mapped to the same
location in the hash table. Contrary to hash table implementations used for application
logic, a hash table used as a cache is not strictly required to tolerate any number of
such collisions. Not storing a value in the hash table affects performance but still yields
the correct result. Nonetheless, tolerating a certain frequency of collisions by allowing the
cache to store multiple entries for the same hash table location is desirable for performance
reasons. I decided to use the linear probing approach for this but with a low maximum
search distance (e.g. eight entries). During a cache lookup, I determine a base index in
the hash table as usual but then compare the keys not only for that entry but for a few
following entries as well. If any of those keys match, I report a cache hit and use the
corresponding cached value. Otherwise, I report a cache miss. Similarly, when inserting
a cache entry, I look through the same few entries following the base index for a suitable
location to insert the entry. “Suitable” can mean several things as explained in section
4.5. In the simplest possible case, it means that the index is so far unused.

4.5 Eviction
Graphics memory is limited and the amount of data produced by caching the material
graph outputs for each ray hit is high. Because temporal reuse is crucial to make the
cache efficient in real-time path tracing, I cannot simply start each frame with an empty
cache. Clearing the cache less often, for example, every N-th frame would make the
cache more efficient on average but still does not work well for real-time applications
because a real-time application is expected to deliver frames at a reasonably consistent
rate. Periodically interrupting smooth user interaction with slow frames would negatively
impact the user experience almost as much as a consistently low frame rate. Instead of
such relatively simple solutions, an eviction method that continuously evicts certain cache
entries to make room for new ones is needed. Choosing an eviction method is a tradeoff
between predicting the reuse of cache entries accurately and the higher computational
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overhead and memory usage of more accurate techniques. Perfectly predicting reuse is not
possible because neither future user interaction, nor the results of random sampling in the
path tracer are known.

Aside from the option to not evict cache entries at all, I implemented and compared three
eviction methods. The first method is to evict a random entry within the linear probing
range. This method has the advantages that it is very easy to implement and that no
memory accesses are required to choose a location, meaning that it introduces practically
no overhead compared to not evicting entries at all. The disadvantage is that it does not
attempt to predict which entries will be useful in the future.

The second method is to evict the entry from the linear probing range that was least
recently written. This is based on the assumption that each cache entry has an interval
of relevance and that the duration of this interval is very roughly similar for all cache
entries. From this assumption follows that the oldest cache entry is the most likely one to
have become irrelevant. The justification for the assumption is the same as for temporal
reuse in general: camera and object motion are usually relatively smooth and it’s rare
for a point to be visible (directly or via reflection) for only a single frame. One problem
in implementing this method is that standard HLSL provides no way of measuring time.
However, the exact times are not relevant. It is sufficient to know the order in which
cache writes occurred and even just knowing the frame when a cache entry was written
is a good heuristic since object and camera motion occur between frame rendering. This
method increases memory usage by a time (or “pseudo-time”) field in each cache entry
and introduces the computational overhead of finding the cache entry where it has the
lowest value.

The third method is to evict the entry from the linear probing range that was least
recently used. This method is similar to the previous one except that the time field is
also updated when a cache entry is read. This increases the overhead because the field
needs to be written more often. The reasoning behind this variant is that it relies less
on the assumption that camera and object motion are smooth than the previous method.
When a cache entry is being used, it is by definition still relevant and when a cache entry
has not been used for a long time, a likely reason is that it is no longer relevant. It should
be noted that this concept of “relevance intervals” is somewhat flawed in path tracing
because some rays are only traced with very low probability, which means that the hit
points may also be very unlikely to reappear in the next few frames. It is however still a
good heuristic for the majority of ray hits.

4.6 Tile-Based Texel Storage
The variant described so far has two problems. First, only nearest-neighbor sampling of the
virtual textures in the cache is efficient. Second, using a hash table has the disadvantage
that any locality of cache reads in the texture space of the virtual textures is eliminated
by the hash function. Particularly for primary rays, but also for certain secondary rays,
the ray hits in a wave are likely to be close to each other both in world space and in
texture space. However, even texels that are directly next to each other in texture space
are usually mapped to very distant locations in memory by the hash function. This means
that hardware caches are not used well.

A solution to both of these problems is tile-based texel storage. Instead of storing individ-
ual texels, small tiles of a fixed size are stored in each cache entry. Cache reads that are
very close in texture space are likely to be on the same tile and thereby close in memory
as well. Figure 4.4 visualizes the virtual texture tiles in an example scene. Bilinear filter-
ing is efficiently possible within the tile by reading all four required texels from the same
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Nearest Neighbor Bilinear

Figure 4.3: Organisation of texels in 4 × 4 tiles for nearest-neighbor filtering (left) and
bilinear filtering (right). Tile borders are represented by thick black lines.
To enable bilinear filtering without reading multiple tiles, tiles overlap by one
texel. Each tile still stores 4 × 4 texels but only represents a 3 × 3 area in
texture space. Boundary texels (gray) are stored by all adjacent tiles.

Figure 4.4: Visualisation of virtual texture tiles as randomly colored squares in one of the
test scenes I used.
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tile. If the requested point lies on the border of the tile, multiple tiles would need to be
accessed. However, this can be avoided by making tiles overlap by one texel (figure 4.3).
This increases the required memory for the cache and the number of texels that need to
be computed but it ensures that the closest four texels to the requested point always lie
on the same tile.

An important question for such a tiled material cache is how a new tile is calculated on
a cache miss. The trivial solution would be to make the thread that requested the tile
compute the entire tile by evaluating the material graph for each texel. This approach
has two major problems. First, without coordination, it is likely that multiple threads
in the same wave compute the same tile, which is redundant. Second, while the thread
performs the very expensive operation of computing the tile, other threads in the wave are
inactive. A better solution is to distribute the calculation of the tile among the threads
of the wave. Using wave operations 2.5.2 for communication between lanes, I assign each
texel of a tile to a different lane. The lanes then calculate their assigned texels in parallel.
The calculation of a missing tile is well suited for this form of parallelization because the
texels can be computed independently and the same operations must be performed for
each texel. I explain the details of my algorithm for computing missing tiles along with
other implementation details in section 5.4.
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5. Implementation

In chapter 4, I explained the core ideas of my material graph memoization techniques
at a relatively abstract level. In this chapter, I explain some important details of my
implementation of the memoization techniques and of the renderer in which I tested them.
I start with my material graph system and real-time path tracer. Then I first describe the
non-tiled memoization variant and finally the additional challenges and design decisions
of the tiled variant. Note that most of section 5.3 is also relevant for the tiled variant
and not repeated in section 5.4. In that sense, the tiled variant should be understood
as an extension or modification of the non-tiled one, rather than a completely separate
technique.

5.1 Material Graph System
I decided to implement my own material graph backend for this thesis so that I have precise
control over the generated code and more insight into the graphs. By “backend” I mean
that my system translates a simple textual description of a material graph to an HLSL
include file. I did not create my own graphical material graph editor but instead wrote an
export script that translates Blender Shading Graphs into my own representation. In this
section, I describe how I implemented my material graph system. While this is not the
main focus of the thesis, I decided to include it as context for the memoization techniques
presented later because integrating material graphs in a real-time path tracer is not a
trivial task and there are different ways to do it.

The input to my system is a list of nodes. Each node description consists of an identifier
for the node type (e.g. “Add” or “Normalize”) and the inputs and outputs of the node as
pairs of socket names and integer IDs. Sockets with matching IDs are connected in the
graph. Notably, this graph representation contains no type annotations. Node inputs and
outputs do have types but these are inferred based on the available node implementations
and type conversions. In that way, it resembles graphical systems, which typically do not
require the user to explicitly declare types either. For simplicity, I only allow a single
parameterized BRDF per graph. BRDF parameters are treated as graph outputs. Listing
5.1 shows how a simple graph would be described in my input format. Figure 5.1 shows a
visual representation of the same graph.

Mipmapped texture sampling requires derivatives of the texture coordinates. In path trac-
ing, these can be provided via ray cones but the texture coordinates may be scaled or oth-
erwise modified by the material graph. My material graph system therefore also generates
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Figure 5.1: A very simple material graph that visualizes normal vectors by mapping them
to colors. The graph is the same as in listing 5.1

Listing 5.1: A very simple material graph in my input format that visualizes normal vectors
by mapping them to colors. The order of nodes is intentionally random here
since ordering is handled by the code generator. The graph is the same as in
figure 5.1.

Mul A<0 B<1 Out>2;
ColorOutput In <3;
Add A<1 B<2 Out>3;
Float1Constant 0 .5 Out>1;
NormalInput Out>0;

code for computing derivatives where needed. Scalar and vector values with derivatives are
represented by separate types. For example, a three-dimensional vector without deriva-
tives is internally represented by the HLSL type float3 while a three-dimensional vector
with derivatives is represented by the struct type float3_D, which contains the value itself
along with two derivatives describing the ray cone footprint. I use the same type inference
algorithm to infer base types as well as whether derivatives are needed. A limitation of
my system for computing derivatives is that it cannot derive a value more than once. This
is rarely a problem in practice but in theory, it can be necessary. For example, one node
available in my system computes a normal vector from a position vector, which is useful for
procedural displacement. Internally, it uses the derivatives of the position vector. Using
this normal vector as texture coordinates for mipmapped texture sampling results in an
error. The system cannot generate derivatives for the normal vector as that would require
second derivatives of the position vector.

Node implementations are provided as function declarations in HLSL include files. I parse
function signatures to build a list of available node implementations. Nodes can have
multiple overloads. In particular, most nodes are available in a version that computes
derivatives and one that does not. Node outputs are represented by output parameters
to allow for more than one output socket per node. As an example, listing 5.2 shows the
implementation of the cross-product node in my system.

The output of my system is an HLSL file that includes all node implementations used in
the graph and declares a single function that evaluates the graph. This function consists
of a list of variable declarations for the edges of the graph, followed by a list of function
calls for the nodes of the graph. Each variable is used exactly once as output but may be
used multiple times as input. In other words, the code is in static single assignment form
(SSA). Since the output is in an imperative language, the nodes must be ordered in such
a way that a variable is never used before it has been assigned. I do this with a depth-first
search starting at the graph outputs.

Variables in HLSL are statically typed but the input graph does not contain type annota-
tions. The system must therefore determine the type of each edge in the graph in a type
inference phase. Type inference consists of selecting an overload for each node. The type
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Listing 5.2: An example of a node implementation. The first overload does not compute
derivatives, the second one does.

void Cross ( in f l o a t 3 A, in f l o a t 3 B, out f l o a t 3 Out) {
Out = c r o s s (A, B) ;

}

void Cross ( in f loat3_D A, in f loat3_D B, out f loat3_D Out) {
Out . v = c r o s s (A. v , B. v ) ;
Out . x = c r o s s (A. v , B. x ) + c r o s s (A. x , B. v ) ;
Out . y = c r o s s (A. v , B. y ) + c r o s s (A. y , B. v ) ;

}

Listing 5.3: The function generated for the example graph (see listing 5.1). Convert is a
macro that invokes a type conversion function.

void EvaluateMaterial_Example ( ) {
f l o a t 1 l i n k 0 ;
f l o a t 3 l i n k 1 ;
f l o a t 3 l i n k 2 ;
f l o a t 3 l i n k 3 ;

Set ( 0 . 5 , l i n k 0 ) ;
NormalInput ( l i n k 1 ) ;
Mul( l ink1 , Convert ( f l o a t 3 , l i n k 0 ) , l i n k 2 ) ;
Add( Convert ( f l o a t 3 , l i n k 0 ) , l ink2 , l i n k 3 ) ;
ColorOutput ( l i n k 3 ) ;

}

of an edge (and its variable) is then chosen to match the type of the corresponding output
parameter. Overload selection happens in three phases. The first and second phase are
a depth-first traversal of the graph. For each node, the available overloads are filtered
based on the current list of overloads at adjacent nodes. The first phase starts at the sinks
(i.e. graph outputs) while the second one starts at the sources (i.e. graph inputs and
constants). The final phase performs an exhaustive search on the remaining combinations
of overloads until it finds a solution for the graph. In principle, the final phase is sufficient
but doing it on the entire search space would be too expensive.

5.2 Pathtracer
An important aspect of my thesis, particularly compared to existing work as mentioned in
chapter 3 is the context of a real-time path tracer. I wrote a real-time path tracer for this
thesis to serve as the framework for the material graph memoization system. This chapter
provides insight into the design of this path tracer as the starting point for section 5.3 and
5.4.

I based the path tracer on DirectX ray tracing (DXR) (section 2.5.5). The GPU-side
code is written in HLSL. More specifically, I implemented the path tracer in a single
compute shader using ray queries for hardware-accelerated ray tracing. Contrary to the
alternative approach of using the ray tracing pipeline, ray queries do not automatically
branch into different hit shaders. Instead, such branching is implemented explicitly with
conventional branching statements where necessary. This is important for my tile-based
cache (section 5.4) because it gives me more control over which lanes in a wave are active,
which I use to distribute the computation of new tiles over multiple lanes. The same could
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however also be achieved by using the ray tracing pipeline with a minimal hit shader that
directly returns information about the intersection to the ray generation shader instead of
performing material-specific code in the hit shader.

The path tracer dispatches one compute shader thread per pixel of the render target.
Primary rays traced by a thread lie within the cone corresponding to the associated pixel.
This is a form of stratified sampling that ensures that the same number of primary rays
is traced for each pixel. It also simplifies writing the results to the render target as in
my implementation, each thread only writes to this one pixel. Consequently, each pixel is
only written by a single thread.

Each thread traces multiple paths for the same pixel. Each path consists of a fixed number
of rays with each ray starting at the previous hit. Directions of secondary rays are de-
termined with BRDF importance sampling. Additionally, I trace a shadow ray to a light
source from each ray hit. Depending on the configuration, I either trace one primary ray
per path or a single shared primary ray for all paths. The second option is an optimization
based on the observation that the cone of a pixel is very narrow and not much variance is
to be expected in the primary hits, except at edges, which can be handled well with various
anti-aliasing techniques. In a production path tracer, one may even choose to generate
primary hits via rasterization instead of by tracing individual primary rays. Which one
of these approaches is chosen affects the performance of the material graph cache because
primary hits are usually much more coherent than secondary rays. Primary hits of nearby
pixels are likely to hit the same object and to be nearby in texture space as well. For
secondary hits, this is generally not the case due to the random sampling. Tracing paths
of a fixed length (as opposed to terminating paths with Russian roulette) makes the path
tracer biased. However, it results in less divergent branching and still delivers good results
for a real-time renderer.

For each ray hit, I first fetch information about the instance, the triangle and the vertices
of the triangle from buffers. Next, I perform various material-independent computations,
mainly related to ray cones (section 2.2). If material graph memoization is disabled, I
then branch by material and evaluate the material graph. If material graph memoization
is enabled, I perform the cache lookup (section 5.3, 5.4). On a cache miss, the material
graph must still be evaluated but this happens as part of the cache lookup and is initiated
by the memoization system. In a previous iteration of my implementation, the memo-
ization system returned whether a cache hit or cache miss occurred and the path tracer
evaluated the material graph on a cache miss and initiated a cache update. However,
that organization does not work well for the tiled variant, which has to compute an entire
tile on a cache miss. In the newer version, this logic is encapsulated in the memoization
system and the rest of the path tracer never evaluates a material graph directly. Once the
material graph outputs are known, I perform all BRDF-specific computations. This also
requires branching but there are usually fewer types of BRDFs in a scene than there are
materials. I sample one direction for the next ray of the path using BRDF importance
sampling. Independently from that, I also sample one light source and trace a shadow
ray to estimate direct lighting. For simplicity, I only support point and directional lights.
Area lights can be emulated via emissive materials but I perform no importance sampling
for them. Finally, I evaluate the BRDF for the two directions of incoming light, compute
the radiance contribution of emission and direct light and continue with the next ray.

5.3 Material Graph Memoization
In section 4, I explained the core aspects of material graph memoization on a more abstract
level. In this section, I explain my specific implementation of material graph memoization,
which I evaluate in chapter 6. In particular, I explain the data structure of the cache, how
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I compute cache keys and hashes, the eviction methods that I implemented, and how I
handle concurrent cache access. This section focuses on the non-tiled variant while section
5.4 focuses on the additional design decisions and challenges of the tiled variant.

5.3.1 Data Structure

The cache is represented in memory by an HLSL RWStructuredBuffer of cache entries.
Each cache entry stores a 32-bit hash of the key, a metadata struct defined by the eviction
strategy and a cache value struct containing the outputs of the material graph. Because
material graphs can have different outputs, the cache value struct is simply an array of
scalar values, which may be interpreted differently for different graphs. The size of the
array is fixed and must be set to the maximum number of fields required by any graph in
the scene. Depending on the configuration, the material graph outputs are stored either
as 32-bit or 16-bit floating point values, the latter using HLSL 16-bit float encoding and
decoding intrinsics. 16-bit floats usually provide sufficient precision for material graph
outputs such as colors or normal vectors. The non-tiled variant does not require any other
global data structures than the cache buffer.

5.3.2 Key and Hashes

The first step of the cache lookup is to compute the key and its hashes. As explained
in 4.2, I include texture coordinates, mipmap level and material ID in the key. The first
step in computing the key is to select the mipmap level. My definition of a mipmap level
in this context differs slightly from the usual definition in that I do not have a minimum
or maximum level, nor does a mipmap level have a fixed size since each mipmap level of
the virtual texture covers the entire 2D plane. Instead, mipmap levels should be thought
of as levels of texel density in texture space. The texel density is the number of texels
corresponding to one unit of length in texture space. I define the mipmap level m as the
base-2 logarithm of the texel density d:

m = log2(d) (5.1)

I compute the mipmap level from the partial derivatives of the texture coordinates as given
by the ray cones (section 2.2):

lx =
∥∥∥∥ ∂t

∂x

∥∥∥∥ (5.2)

ly =
∥∥∥∥ ∂t

∂y

∥∥∥∥ (5.3)

lmin = min{lx, ly} (5.4)
m = round(log2(lmin) + bias) (5.5)

• t = (u, v) is the position of the ray hit in texture space,

• x and y are the directions of the ellipse axes of the ray cone footprint,

• round(x) rounds x to the nearest integer,

• bias is an optional bias applied to the mipmap level.

A noteworthy difference to, for example, OpenGL mipmap selection is that I use the shorter
of the two derivatives instead of the longer one, which means that I prefer the higher texel
density in anisotropic cases. This is because mipmapping usually mainly serves the purpose
of preventing aliasing while in my case, it serves to limit the cache resolution to enable
the reuse of texels. The material graph would typically already implement some form of
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anti-aliasing, e.g. by using mipmapping when reading from textures. Choosing the higher
texel density prevents overblurring. Once the mipmap level is known, I convert the texture
coordinates to texels and round to the nearest texel:

û = round(2mu) (5.6)
v̂ = round(2mv) (5.7)

The next step is to compute two 32-bit hashes. The first hash is used to select the location
in the hash table, the second one is stored in the cache entry and compared during a cache
lookup to verify that the entry is the requested one. Computing a 32-bit hash from the
more precise input values is a form of lossy data compression. It is therefore important
to compute both hashes in different ways from the full key. It is not sufficient to compute
one hash and then apply some modifications to it to get a second hash because then a
collision in the first hash would always result in a collision in the second one as well, which
renders the second hash useless. With that in mind, I compute the hashes and the hash
table index as follows:

H0 = hash(m ⊕ hash(û ⊕ hash(v̂ ⊕ ID0))) (5.8)
H1 = hash(m ⊕ hash(û ⊕ hash(v̂ ⊕ ID1))) (5.9)

I = H0 mod (S − D) (5.10)

• H0 and H1 are the hashes,

• hash(x) is a hash function for 32-bit integers, such as the PCG-hash [O’N14],

• ⊕ is the bitwise XOR operation,

• ID0 and ID1 are two different hashes of the material graph computed ahead of time,

• I is the index in the hash table where the linear probing starts,

• S is the size of the hash table,

• D is the maximum linear probing distance.

5.3.3 Linear Probing and Eviction

After a thread has determined the start index in the hash table, it performs a linear search
over the following D entries to find one with a matching key. I implemented the linear
search as a simple for loop that can be unrolled because the maximum linear probing
distance is constant. Only the 32-bit hash of the key of each entry must be read in
the loop. If no matching key is found, the thread evaluates the material graph and the
eviction strategy chooses a location for the new cache entry in the same section of the hash
table. This is trivial for the randomized eviction strategy. For the least-recently-updated
and least-recently-used strategies, it requires another linear search to determine the entry
where the time metadata field has the lowest value.

In both cases, cache entries may be overwritten by other threads during the linear search.
I only protected the actual read and write operations against concurrent access (section
5.3.4) but not the linear search. This means that the index found by the linear search is
not guaranteed to still have the correct key or to still be the optimal location to insert the
new cache entry. I tolerate this and simply report a cache miss if the key has changed when
reading a cache entry. I always insert a cache entry at the potentially incorrect location
found by the linear search because choosing the ideal cache entry to evict is not necessary
for the cache to work and deliver correct results. It is also less likely for two threads to
access the same section of the hash table in the second linear search than in the first one
because the second one is only performed on a cache miss.
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The least-recently-updated and least-recently-used eviction strategies require a time meta-
data field. Determining the current time is not possible in standard HLSL but that is not
necessary for eviction because only the order in which cache entries were read or writ-
ten matters, not the time itself. I implemented two different methods of determining a
pseudo-time value to be used for the time metadata field instead of a timestamp. The first
one is to use a 32-bit CPU-side counter that is incremented between frames and passed to
the GPU before rendering a frame. This method is very lightweight but not very precise
since many cache entries are written in the same frame. Nonetheless, it is a good heuristic
for an eviction strategy because camera and object motion are the main reasons to prefer
evicting older entries and those take place between frame rendering. The second method
is to use a GPU-side atomic counter that is incremented whenever a cache entry is written
or read (the latter only if the least-recently-used strategy is used). This method gives the
correct results but atomic operations on global memory are relatively expensive. Another
problem is that a 32-bit counter may not be sufficient for counting all cache writes and
is certainly not sufficient for counting all cache reads. For example, if eight cache reads
per pixel are performed on a 1920 × 1080 pixel screen at 60 frames per second, a 32-bit
counter would roll over approximately every four seconds:

232

8 · 1920 · 1080 · 60 ≈ 4.3 (5.11)

I solve this by simply using a 64-bit counter but that increases the size of the cache entries.
Alternatively, one could reduce the precision by not storing all 64 bits in the cache entries.
For example, using only bits 16 to 48 of a 64-bit counter would still be more precise than
only storing a frame counter and result in a rollover interval of approximately 80 hours
using the same parameters as above.

5.3.4 Concurrent Reading and Writing

The cache buffer is read and written concurrently by many different threads. This can
lead to various problems. First, if two or more threads write the same cache entry simulta-
neously, the resulting entry may be an invalid combination of the correct entries, as shown
in the following example sequence:

1. ThreadA writes KeyA,

2. ThreadB writes KeyB,

3. ThreadB writes ValueB,

4. ThreadA writes ValueA.

The resulting cache entry would consist of KeyB and ValueA. All threads reading the cache
with KeyB afterward would use the wrong cached value (until the entry is overwritten
again). Since the cache value cannot be written atomically, the result of concurrent writes
could even be a new cache value that is a combination of the correct values.

To prevent inconsistent cache entries resulting from concurrent writes, I lock the cache
entry before writing it. I do this by using InterlockedExchange to atomically swap the
key in the cache with a special value CACHE_LOCK, which indicates that the cache entry
is locked. If the value returned by InterlockedExchange is CACHE_LOCK as well, then
the cache entry was already locked and the thread must abort writing. If it is not, the
thread continues by writing first the cache value (and metadata if required by the eviction
method) and then the cache key, which also unlocks the cache entry because the key is
no longer CACHE_LOCK. I do not retry writing if the cache entry was locked. While this
would be possible, it would mean that the cache entry that was just written is immediately
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evicted, and with the eviction methods that I implemented, there is no reason to prefer
one cache entry over another that was written almost at the same time. Instead, I simply
discard the cache entry. It is still used for the current frame by the thread that calculated
it but it is not cached.

A slightly different problem may arise when one thread writes a cache entry and one or
more other threads read it concurrently. A thread will never attempt reading an already
locked cache entry because the key does not match. However, a thread can overwrite a
cache entry after another thread has started but not completed reading it, as shown in the
following example sequence:

1. The cache entry originally stores KeyA and ValueA,

2. ThreadA reads KeyA,

3. ThreadB locks the entry,

4. ThreadB writes ValueB,

5. ThreadA reads ValueB,

6. ThreadB writes KeyB (which unlocks the entry).

In this case, ThreadA would read and use the wrong value because the key matched.
Note that the order of steps five and six does not matter, the problem would remain the
same if they were swapped. This problem is less severe because it only has temporary
consequences while the previous one resulted in a permanently incorrect cache entry (until
overwritten). Nonetheless, it should be avoided.

In principle, this problem could be prevented in the same way as the previous one. Locking
the cache entry not just for writing but also for reading would ensure that no thread
overwrites a cache entry while another is reading it. However, cache entries are ideally
much more often read than written and it is not a problem for multiple threads to read the
same entry concurrently. Problems only arise when at least one thread writes the cache
entry. Moreover, atomic operations on global memory are relatively expensive operations
and it is an advantage to avoid them for the more common operation of reading a cache
entry. The solution I settled on is to first read the key, then the value and finally the
key again to test if it has changed since the read operation began. If the key no longer
matches, a cache miss is reported. While this approach fixes the problem in the example
case given above, there are in theory still situations where it fails as the following example
sequence demonstrates (ThreadA and ThreadA′ represent different threads with the same
key):

1. The cache entry originally stores KeyA and ValueA,

2. ThreadA reads KeyA,

3. ThreadB locks the entry,

4. ThreadB writes ValueB,

5. ThreadB writes KeyB (which unlocks the entry),

6. ThreadA reads ValueB,

7. ThreadA′ locks the entry,

8. ThreadA′ writes ValueA,

9. ThreadA′ writes KeyA (which unlocks the entry),

10. ThreadA reads KeyA again.
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To summarize, while ThreadA is reading the cache entry, two full write operations are
performed by other threads, the second of which reverts the key to its original value.
Situations like this are unlikely but possible and result in ThreadA reading the correct key
before and after reading the wrong value. The root of the problem is that reading the
same key twice is not a reliable indicator that it did not change between the two reads. I
chose to ignore these situations in my implementation as they are unlikely enough to not
have a noticeable effect on the final image. As mentioned before, the consequences are
temporary, the cache is still consistent at the end of each frame. It is however possible to
prevent these situations without locking the cache entry for each read at the cost of an
additional integer field in each cache entry. In this alternative solution, a thread writing a
cache entry would first lock the entry, then increment an update counter in the cache entry,
then write the value and finally unlock the entry by writing the key. A thread reading a
cache entry would first read the update counter, then the key, then the value and finally
the update counter again. This would allow the thread to reliably detect changes to the
cache entry because contrary to the key, the update counter can never be reverted to the
previous value.

5.4 Tiled Material Graph Memoization
The tiled variant of material graph memoization is more complex to implement than the
nontiled one. While some of the implementation details discussed in section 5.3 remain
the same in the tiled variant, various additional problems must be solved and additional
design decisions must be made. In this section, I explain the data structures I use for
the tile-based cache, how I compute cache keys and hashes in the tiled variant and how I
compute missing tiles efficiently by distributing the computation across multiple lanes in
a wave.

5.4.1 Data Structures

Like the non-tiled version, the tiled cache also uses an RWStructuredBuffer as the hash
table. This buffer always stores the keys as well as the metadata structs that may be
required by the eviction strategy. Contrary to the non-tiled variant, each entry represents
not just a single texel but a small (e.g. 4 × 4) tile of texels. I implemented and compared
four different methods of storing the texels. One option is to include them in the main
cache buffer, similar to the non-tiled variant. For example, with 4 × 4 tiles, each key and
metadata struct would be followed by 16 texels, each of which contains all the outputs
generated by the material graph. A disadvantage of this approach is that the fields read
in the linear probing loop are spread out over a relatively large section of memory, which
reduces hardware cache efficiency. The second option is therefore to store the texels in a
separate buffer, which places them further from their keys and metadata but results in more
tightly packed keys. The third option is to store the texels in an RWTexture2D. This has two
advantages. First, hardware-accelerated bilinear filtering can be used. Second, the internal
memory layout of a 2D texture is optimized for accesses that are close together in the 2D
texture space. This is useful because bilinear sampling requires reading a 2 × 2 square of
texels and because at least primary rays of nearby pixels are likely to hit nearby points in
texture space. However, storing small tiles already has the same effect to a certain extent,
even when stored line by line in a buffer. Furthermore, if the material graph produces
more than four channels of outputs, as is usually the case, multiple tile-sized grids of texels
must be allocated for each cache entry in the 2D texture. For example, eleven channels are
necessary to store emission, base color, normal, roughness and metalness. This spreads
out the values belonging to a single texel, which also negatively affects hardware cache
efficiency as these values are always read and written together. This motivates the final
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method that I implemented, which is to store the tiles in a 3D texture. In this variant,
I arrange the multiple tile-sized texel grids of each tile next to each other in the third
dimension of the texture. 3D textures are optimized for accesses that are local in the 3D
texture space, which means that both nearby texels and the other values belonging to the
same texel should be nearby in memory. The downside is that 3D textures do not allow
hardware-accelerated bilinear filtering but only trilinear filtering, which is more expensive
but not required in this case.

5.4.2 Key and Hashes

The cache key in the tiled variant identifies only a tile, not a texel. It consists of the
tile position in texture space, the mipmap level and the material ID. Additionally, the
coordinates of the ray hit within the tile are required to sample the tile. Computing the
mipmap level is the same as in the non-tiled variant. Computing the tile position is similar
to computing the texel in the non-tiled variant except for the different grid resolution:

û = floor
(2mu

su

)
(5.12)

v̂ = floor
(2mv

sv

)
(5.13)

• û and v̂ are the position of the tile in multiples of the tile size,

• s = (su, sv) is the tile size in texels.

If bilinear filtering is used, tiles overlap by one texel. In that case, s is the size of the area
covered by the tile in texture space, i.e. one less than the number of texels stored in the
tile. The coordinates within the tile are simply the fractional part of the previous formula:

ũ = 2mu

su
− û (5.14)

ṽ = 2mv

sv
− v̂ (5.15)

• ũ and ṽ are the coordinates within the tile in range [0, 1].

I combine the tile position, mipmap level and material ID in the same way as in the
non-tiled variant (equation 5.8 and 5.9).

5.4.3 Calculation of Missing Tiles

On a cache miss, the missing tile must be calculated and inserted into the cache. Instead
of computing the tile entirely within the thread that had a cache miss, I distribute the
calculation over the wave using wave operations (section 2.5.2). Each texel of a tile is
calculated by a different lane. In my implementation, I do not allow more texels per tile
than lanes per wave. I do however allow smaller tiles and compute multiple tiles in parallel
within one wave if possible. For example, on GPUs that have 32 lanes per wave, two 4 × 4
tiles of the same material can be calculated simultaneously.

A sufficient number of lanes must not only exist but also be active within a wave when the
calculation of missing tiles starts. Every branching instruction can cause lanes to become
inactive. For example, one may want to stop tracing paths that hit the sky or ones that fail
a Russian Roulette test. However, a naive implementation of this (e.g. by conditionally
breaking out of a loop or returning from a function) would result in those lanes becoming
inactive. Inactive lanes are not reachable with wave operations and do not execute any
code. Inactive lanes are also a problem when the ray tracing pipeline is used instead of
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ray queries. The ray tracing pipeline allows assigning different hit shaders to different
instances. A natural use case for this capability is to execute all material-specific code
in the hit shader and perform no explicit branching by material. The problem with this
approach is that when a hit shader is executed, only lanes that are executing the same
hit shader are active. The ray tracing pipeline can still be used for the tiled variant if all
objects use the same hit shader or if the calculation of missing tiles is performed in the
ray generation shader.

Each lane queries the cache independently. Lanes that had a cache miss request the
computation of their tile from the wave. Lanes that had a cache hit still participate in the
computation of the missing tiles. Multiple lanes may request the same tile so the set of
missing tiles in the wave may be smaller than the number of lanes that had a cache miss.
I compute the missing tiles in several iterations. Each lane computes at most one texel
per iteration but as mentioned before, the wave still computes multiple tiles in a single
iteration if the tile size is small enough. Each iteration consists of the following steps:

1. The wave selects the lanes whose tiles will be computed in this iteration.

2. Each selected lane broadcasts the information necessary to compute the tile to the
lanes responsible for computing the tile.

3. Each lane computes the texture coordinates where it must evaluate the material
graph.

4. Each lane evaluates the material graph.

5. The lane that was assigned the top left texel performs the linear search to find a
suitable index in the hash table and locks the entry.

6. Each lane writes its texel to the cache entry.

7. The lane that was assigned the top left texel overwrites the key.

8. The lanes that require one of the tiles computed in this iteration read the values
they need from the corresponding lanes.

In the first step, lanes are selected one by one in ascending order of the lane index. Lanes
that do not request a tile are skipped. A lane does not request a tile if it had a cache hit, if
the tile it required has already been computed in a previous iteration, or if it has already
been selected for this iteration. I use WaveActiveBallot to obtain a bit mask where each
bit represents whether the corresponding lane requests a tile. The index of the first set
bit is the index of the lane that is selected.

In the second step, the selected lanes broadcast the tile position, the mipmap level, the
material ID and a set of flags that describe the inputs and outputs of the graph. I use
WaveReadLaneAt for this. WaveReadLaneAt is called with a value and a lane index and
returns the value passed to the function by the lane that has the given index.

In the third step, each lane first determines its assigned texel within the tile from its
lane index. Then it computes the global texture coordinates using the tile position and
mipmap level that it received in the previous step. To evaluate the material graph, the
derivatives of the texture coordinates are needed as well to select mipmap levels when
sampling textures in the graph. The only information I have about these derivatives when
calculating a tile is the mipmap level m of the tile so I compute two fictional derivative
vectors of equal length that would result in that mipmap level:

∂t

∂x
= (2−m, 0) (5.16)

∂t

∂y
= (0, 2−m) (5.17)
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A B A C B D

The wave determines the first N lanes that are missing a tile

The chosen lanes broadcast information about their tiles

The lanes compute their assigned texels

The first lane of each tile determines and broadcasts the hash table index

The lanes write their assigned texels to the cache entry

Lanes that need texels from the current tiles fetch them from the lanes that computed them

WAVE ACTIVE BALLOT

WAVE READ LANE AT

WAVE READ LANE AT

WAVE READ LANE AT

Figure 5.2: Communication between lanes in one iteration of the algorithm for computing
missing tiles. Red lanes had a cache miss and request the computation of the
tiles A, B, C, and D. Two 4 × 4 tiles (A and B) are computed in one iteration
in this example.

Material graphs might also need other vertex attributes than just the texture coordinates
but I do not support this in my implementation of the tiled variant. One possible solution
would be to precompute textures containing the needed vertex attributes so that they can
be sampled using the texture coordinates. Another one would be to extrapolate the vertex
attributes from the ray hit of the lane that requested the tile. The lane that requested the
tile knows the value and derivatives of the vertex attribute at its ray hit. From these, the
value can be linearly extrapolated to other points on the tile. This results in the correct
values if the tile lies entirely on one triangle. Otherwise, it is only an approximation but
it may still work well in some cases.

Steps four, five, six and seven are very similar to the non-tiled variant. The lane that was
assigned the top left texel of the tile performs the same steps as in the non-tiled variant,
except that it also broadcasts the index of the cache entry and whether it obtained a lock
on it to the other lanes.

The last step is necessary because it cannot be guaranteed that a tile is written to the
cache. If no lock was obtained, the write operation is aborted. The lanes that requested
the tile still need values but cannot read them from the cache. Aside from that problem,
it is also faster to exchange the values with wave operations than via global memory.
I exchange the values with WaveReadLaneAt as before. Nearest-neighbor sampling only
requires reading from one lane while bilinear sampling requires reading from four lanes
and interpolating the results.

5.4.4 Grouping Missing Tiles by Material

Even if multiple tiles are computed in one iteration, they are only computed in parallel
if the material graph is the same. Otherwise, evaluating the material graph involves
divergent branching and the tiles are effectively computed sequentially. To solve this
problem, I also implemented an alternative, more complex version of the first step that
attempts to sort tiles with the same material into the same iteration. The solution works
only for the case where two tiles are computed in one iteration (e.g. two 4 × 4 tiles on a
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GPU with 32 lanes per wave). Before I begin the iteration, I determine for each unique
material in the wave whether the number of lanes requesting a tile of that material is
even or odd using WaveActiveCountBits. I then add a high offset to the IDs of materials
where the number is odd. This has the effect that sorting the tiles by material ID results
in an order where tiles of the same material are optimally paired up for being computed
in parallel. Tiles of the same material always appear next to each other in that order
because they have the same material ID. The offset ensures that all materials with an
even number of requested tiles appear first. Without the offset, a material with an odd
number of requested tiles could break up possible pairings later in the list. For example,
if one tile of material 1, two tiles of material 2 and two tiles of material 3 were requested,
the resulting order and pairings would be (1, 2), (2, 3), (3, −). With an offset of 1000, it
would be (2, 2), (3, 3), (1001, −), achieving two pairs that can be parallelized instead of
none. I ensure that the tiles are processed in this order by implementing selection sort
with wave operations. When selecting a lane, I first select the material ID for the next tile
with WaveActiveMin and then select the first lane requesting a tile of that material with
WaveActiveBallot as before.
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6. Results

I evaluated the effectiveness of my techniques with regard to image quality and performance
by testing them in an example scene with recorded camera motion. I also compared the
different variants I described as well as many different configurations of their parameters.
I rendered at 1920 × 1080 on an NVIDIA RTX 4070 Ti. I used two scenes for testing.
The first one is the Blender Classroom example scene by Christophe Seux with slight
modifications to make it work in my relatively basic path tracer. The second one is a
landscape with a car model by user ROH3D on sketchfab.com. The two scenes are very
different. The Landscape scene only uses four different materials, three of them on the car
and a fourth, relatively complex one for the terrain. The Classroom scene in the version
that I used has 69 different materials. Another important difference is that the Classroom
scene is a mostly closed room while the Landscape scene is an open exterior scene. I
recorded first-person-style camera motion for both scenes and played it back frame by
frame in each test run to get comparable timings.

For the performance comparisons in the Classroom scene, I traced six paths of four rays
per pixel with an additional shadow ray to a direct light source at each of the four ray
hits. In the Landscape scene, I traced 18 such paths per pixel because the scene is much
cheaper to render. For the quality comparisons, I traced significantly more rays because
my goal was to quantify only the bias added by memoization.

(a) Classroom (b) Landscape

Figure 6.1: The two test scenes I used.
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Reference

No Snapping

Snapping

Bilinear

0.014

0.010

0.013

Figure 6.2: Quality comparison of converged (10, 000 paths per pixel) images. The left
column is a FLIP error map amplified by a factor of eight. Snapping refers to
rounding the texture coordinates to the nearest cache texel before evaluating
the material graph. This is implicitly done in the tiled variant but optional in
the non-tiled variant. Note that Reference refers to an image rendered with the
same path tracer without memoization, not with an unbiased reference path
tracer.
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6.1 Impact on Image Quality
Material graph outputs are not only reused when the inputs are identical but also when
they are just similar enough. This is necessary for the cache to be effective but results
in a slight loss of image quality when memoization is used. In the non-tiled variant,
texture coordinates can either be passed to the material graph unchanged or snapped to
the nearest cache texel. These two options result in different errors. In the tiled variant,
the texture coordinates are always snapped to cache texels since all texels of a tile must be
evaluated instead of just the one at the ray hit. The image quality is also affected by the
interpolation method. The tiled variant supports nearest-neighbor and bilinear filtering
while the non-tiled variant only supports nearest-neighbor filtering. This means that
there are three different variants to compare regarding image quality: nearest-neighbor
interpolation without snapping to the nearest texel, nearest-neighbor interpolation with
snapping and bilinear interpolation.

I compared images rendered with 10, 000 paths per pixel to eliminate most of the noise from
the Monte Carlo integration and focus on the additional bias caused by the memoization.
The images were captured after 500 frames of camera motion. I quantified the error using
the FLIP metric [ANA+20]. Figure 6.2 shows the example images that I used as well as
the corresponding FLIP error maps (amplified by a factor of eight).

While the images of all three variants look similar to the reference image, they are visi-
bly different when zoomed in on specific details. As expected, the highest errors occur at
high-frequent features in textures. Since the errors are the result of resampling and slightly
misplaced texture information, they are not noticeable in low-frequency areas. Further-
more, since the geometry is not affected by the memoization, high-frequent geometric
features do not result in significant errors either.

Both nearest-neighbor variants exhibit slight aliasing artifacts but they are more visible in
the variant without snapping. The tiled variant with bilinear interpolation has no visible
aliasing artifacts but results in slightly more blurry textures than the other two variants. I
do not interpolate between mipmap levels in any variant. As a result, the border between
mipmap levels is slightly visible in some areas, particularly in the variant with bilinear
filtering due to the different blurriness. This is particularly visible in the rightmost column
of figure 6.2.

The variant with nearest-neighbor interpolation and snapping has the best FLIP score.
The variant with bilinear interpolation scores slightly better than the variant without
snapping. The blur caused by bilinear interpolation can be reduced by applying a bias
to the mipmap level of the virtual textures of the cache (figure 6.3). However, this also
results in worse performance as more tiles need to be evaluated.

By sampling random primary ray directions, the path tracer implicitly applies some anti-
aliasing when many paths are accumulated. Turning this off by always tracing primary
rays through pixel centers makes the differences in image quality much more visible. Figure
6.4 compares example images rendered without implicit anti-aliasing.

Aside from being different from the reference image, aliasing artifacts also result in a less
temporally stable image. As the camera or objects move, high-frequent details in textures
appear to change slightly instead of just moving across the screen. This is also much more
visible when the implicit anti-aliasing of the path tracer is disabled. Figure 6.5 compares
the temporal stability of bilinear interpolation and nearest-neighbor interpolation with
snapping under sub-pixel camera motion.

It is worth noting that the errors are almost exclusively caused by sampling the cache at
primary hits. A simple solution if better image quality is desired is to not cache primary
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Bias 0.0 Bias 0.2 Bias 0.4

Bias 0.6 Bias 0.8 Reference

Figure 6.3: Applying a bias to the mipmap level of the virtual textures of the cache reduces
the blur caused by bilinear interpolation.

Reference No Snapping Snapping Bilinear

Figure 6.4: Usually the path tracer implicitly applies some anti-aliasing by sampling ran-
dom directions for primary rays. Disabling this makes the differences more
visible.

Snapping

Bilinear

Figure 6.5: Comparison of the temporal stability of bilinear interpolation and nearest-
neighbor interpolation with snapping. From left to right, the camera rotates
one pixel to the right over five frames. Nearest neighbor interpolation causes
visible changes in some texture details from one frame to another. Like in
figure 6.4, the implicit anti-aliasing of the path tracer has been disabled here.
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Reference No Snapping Snapping Bilinear

Figure 6.6: Quality comparison with memoization disabled for primary hits. Using the
cache for secondary hits only results in near perfect images while still improving
performance compared to using no cache at all.
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Figure 6.7: Frame times and hit rates in the Classroom scene. Times are in milliseconds
per frame.

hits. Evaluating material graphs at primary hits is relatively fast compared to secondary
hits. Slight aliasing or blur in secondary hits are usually not noticeable because the BRDF
acts as a low-pass filter. Figure 6.6 compares the image quality with memoization disabled
for primary hits.

6.2 Overall Performance
I tested the performance of the non-tiled and tiled memoization in the Classroom and
Landscape scene. For the tiled variant, I compared nearest-neighbor and bilinear inter-
polation. I also tested how disabling memoization for primary hits affects performance.
I used the least-recently-used eviction strategy with atomic counter. I compare the per-
formance of different eviction strategies in section 6.5. I used a very large cache of 224

cache entries in the non-tiled variant and 220 4 × 4 tiles in the tiled variant. I compare the
performance of different cache sizes in section 6.6.1 and the performance of different tile
sizes in section 6.6.3. The results are shown in figures 6.7 and 6.8 and listed in table 6.1.

Using any of the memoization variants improved the performance in both scenes. The
difference between using memoization and not using it was much more significant in the
classroom scene. One reason for this is that the classroom scene has more different ma-
terials. Another is that secondary rays often hit the skybox in the landscape scene and
therefore do not need to evaluate a material graph. Caching only secondary hits still re-
sulted in a noticeable performance improvement. The tiled variant with nearest-neighbor
interpolation performed slightly better than the non-tiled variant. The tiled variant with
bilinear interpolation performed worse than the non-tiled variant. Bilinear interpolation
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Figure 6.8: Frame times and hit rates in the Landscape scene. Times are in milliseconds
per frame.

Table 6.1: Hit rates and median frame times in the tiled and non-tiled variant.
Classroom Landscape

No memoization 136.9 ms - 41.6 ms -
Non-tiled 23.1 ms 99.915% 29.0 ms 99.897%
Tiled, nearest neighbor 20.0 ms 99.978% 28.3 ms 99.981%
Tiled, bilinear 26.5 ms 99.961% 33.3 ms 99.971%
Non-tiled* 21.4 ms 99.994% 32.5 ms 99.955%
Tiled, nearest neighbor* 20.3 ms 99.999% 33.8 ms 99.995%
Tiled, bilinear* 25.1 ms 99.998% 35.4 ms 99.992%

*Memoization is only used for secondary hits
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Figure 6.9: Cache misses (red) in the Classroom scene. The camera is moving forward,
which results in concentric circles of cache misses where a new mipmap level
becomes visible. Aside from this effect, very few cache lookups miss.

requires that tiles overlap by one texel, which means that more texels must be computed
in total, resulting in worse performance. The hit rate was consistently very high in this
comparison. In all but one run it exceeded 99.9%. Figure 6.9 shows a screenshot of the
Classroom scene with cache misses visualized as red pixels. Cache misses mostly occur
when new parts of the scene or new mipmap levels become visible.

6.3 Comparison of Memory- and Compute-Heavy Graphs

Compute operations and memory accesses such as sampling a texture are processed differ-
ently by GPUs. Which one of these a material graph uses more may change the effective-
ness of the material graph memoization. To test this, I compared two different versions of
the Classroom scene. The material graphs in the original scene mainly sample textures and
combine or modify the results with relatively cheap operations. As a test case that uses
exclusively compute operations, I replaced all material graphs in the scene with graphs
that evaluate multiple octaves of simplex noise. By adjusting the number of octaves, I
made the two versions of the scene perform similarly without memoization. I then tested
the effect of memoization in the non-tiled and tiled variants on the performance. In the
non-tiled variant, I used a cache size of 224 = 16777216 entries. In the tiled variant, I used
a cache size of 220 = 1048576 4 × 4 tiles (i.e. the same number of texels as in the non-tiled
variant). The results are shown in figure 6.10.

In both versions of the scene, using memoization resulted in a significant speedup and
tiled memoization was faster than non-tiled one. Interestingly, non-tiled memoization was
slightly less effective in the compute scene than in the original one while tiled memoization
was slightly more effective. This is likely because compute operations are more sensitive
to divergent branching. When a lane evaluates a material graph, all other lanes in the
wave that do not evaluate the same material graph are inactive and cannot perform any
compute operations. In the non-tiled variant, a lane had on average 12.4 peers executing
the same material graph (out of 32 lanes per wave), compared to 26.0 in the tiled variant.

45



46 6. Results

No Memoization Non-Tiled Tiled

0

20

40

60

80

100

120

140

160

180
Memory

Compute

Figure 6.10: Performance comparison of memory-heavy and compute-heavy graphs. The
chart shows milliseconds per frame.
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Figure 6.11: Performance comparison of different tile storage methods for different cache
sizes. The chart shows milliseconds per frame. Nearest-neighbor interpolation
was used in all runs. Notably, the performance is significantly worse for very
large caches in the texture-based variants.
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Figure 6.12: Performance comparison of different tile storage methods for nearest-neighbor
and bilinear interpolation. The chart shows milliseconds per frame. The cache
size was 219 4 × 4 tiles in all runs.

6.4 Performance of Different Tile Storage Methods

As explained in section 5.4.1, I implemented four different methods of storing tiles in the
tiled memoization variant. The first is to store the tiles in a 2D texture. If more than four
channels per tile are used, multiple tile-sized areas next to each other in X-direction are
used to store a single tile. The second is to use a 3D texture so that the multiple tile-sized
areas can be stored more compactly by stacking them in Z-direction. The third is to store
the tiles in the same buffer as the keys and the fourth is to store them in a separate
buffer. Storing tiles in a buffer instead of a texture has the advantage that all channels
of a texel are stored compactly in memory. In theory, using a texture has the advantages
that hardware bilinear interpolation can be used and that it enables the GPU to use a
memory layout and caching strategy optimized for memory accesses that are local in 2D
or 3D space. However, my results show that despite these advantages, the texture-based
variants do not perform better than the buffer-based ones.

I compared the performance of the four methods with nearest-neighbor interpolation for
three different cache sizes because the cache size significantly affects performance in the
texture-based variants. I also compared their performance when using nearest-neighbor
and bilinear interpolation for a cache size of 219 4×4 tiles. The results are shown in figures
6.11 and 6.12.

When nearest-neighbor interpolation is used, storing tiles in a buffer performs better than
using textures. The performance of using a single buffer is nearly identical to the per-
formance of separate buffers for keys and tiles. The performance of the texture-based
methods is significantly worse for very large caches (220 or 221 4 × 4 tiles). This effect is
stronger for 2D textures. When bilinear interpolation is used at a cache size of 219 tiles,
the performance of all four methods is similar.

The results indicate that the memory layout of 2D and 3D textures provides little or no
advantage in this use case, presumably because even the buffer-based variants preserve
locality well due to the tile-based layout and locality beyond tile borders is irrelevant due
to the hash function. Storing all channels of a single texel compactly appears to be more
beneficial. The bad performance of large textures is surprising. To investigate this issue,
I compared the variant using a 2D texture and the variant using a separate buffer with

47



48 6. Results

cache sizes of 219 and 221 tiles in the NVIDIA Nsight Graphics GPU Trace Profiler. In the
texture-based variant, the profiler reports a much lower L2 hit rate for the larger cache
(75% instead of 99.7%). In the buffer-based variant, the L2 hit rate is 99.4% for both
cache sizes. The L1 hit rates are similar for all four runs (around 64%). The lower L2 hit
rate is most likely the reason for the worse performance. It seems that the texture caching
strategy used by the GPU is ineffective for this use case.

I recommend using either of the buffer-based variants. Even when bilinear filtering is used,
the texture-based caches do not provide an advantage and they perform significantly worse
for large caches.

6.5 Performance of Different Eviction Strategies
As explained in section 4.5, I implemented three different eviction strategies. The first is to
evict a random entry in the linear probing range, the second one to evict the least recently
written entry and the third one to evict the least recently used entry. The latter two
strategies require comparing the age of cache entries, which I implemented in two different
ways. The first is an approximation that uses the frame when a cache entry was written
or read while the second one is exact by using an atomic counter that is incremented for
each cache write or read. These eviction strategies differ in how well they predict the reuse
of cache entries and in their computational overhead. I tested the eviction strategies by
measuring frame times and hit rates in the Classroom scene with recorded camera motion.
The hit rate indicates how well a strategy predicts reuse. The frame times indicate whether
a higher hit rate justifies the higher overhead of a more expensive strategy.

The eviction strategies behave differently depending on the cache size. In the non-tiled
variant, I compared them with a cache size of 221 = 2097152 and 223 = 8388608 entries.
In the tiled variant, I used a tile size of 4 × 4 and the same cache size by the number of
texels, which results in 217 = 131072 and 219 = 524288 cache entries respectively. The
results are shown in figure 6.13 and listed in table 6.2.

The results show that for a sufficiently large cache, using any of the three eviction strategies
is a major improvement over not evicting cache entries but the differences between the
strategies are relatively small. The importance of eviction also becomes evident when the
cache hit rate is observed over time (figure 6.14). Without eviction, it declines quickly as
the cache is full of cache entries that are no longer relevant.

All three strategies achieve hit rates above 99%. Generally speaking, the more expensive
strategies did achieve higher hit rates although random eviction also performs surprisingly
well. Interestingly, using the exact timing method based on an atomic counter instead of
the frame counter approximation resulted in a slightly higher hit rate. This shows that not
only motion in the scene is relevant for eviction but also the order in which pixels of the
same frame are processed. However, the higher overhead of the atomic counter resulted
in slightly worse performance despite the higher hit rate.

Reducing the cache size changes the results significantly. Especially in the tiled variant,
using the frame counter approximation performs significantly worse than using an atomic
counter. The key difference to the runs with the larger cache is that the cache is too
small to contain many frames worth of cache entries. Counting the number of distinct
keys used to query the cache in one frame reveals that a typical frame in the Classroom
scene accesses around 1, 300, 000 cache entries in the non-tiled variant and around 110, 000
tiles (1, 760, 000 texels) in the tiled variant. This is similar to the smaller cache size of
221 = 2097152 texels. Scene motion is therefore less relevant. Evicting older entries first
can be counterproductive because the oldest entries are typically entries from the previous
frame, which are particularly valuable for temporal reuse. The assumption that old entries

48



6.5. Performance of Different Eviction Strategies 49

No Memoization No Eviction Random LRW Frame LRU Frame LRW Counter LRU Counter

0

20

40

60

80

100

120

140

160

180

79.45%

99.73%

99.82%

99.89%

99.86%

99.89%

No Eviction

Random

LRW Frame

LRU Frame

LRW Counter

LRU Counter

(a) Non-tiled, large cache (223 = 8388608 entries)
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(b) Tiled, large cache (223 = 8388608 texels, 219 = 524288 tiles)
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(c) Non-tiled, small cache (221 = 2097152 entries)
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(d) Tiled, small cache (221 = 2097152 texels, 217 = 131072 tiles)

Figure 6.13: Frame times (left) and hit rate (right) of different eviction strategies for dif-
ferent cache sizes. Times are in milliseconds per frame.
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Table 6.2: Median frame times and hit rates of different eviction strategies for different
cache sizes. Times are in milliseconds per frame. The larger cache size is
223 = 8388608 texels or 219 = 524288 tiles, the smaller one is 221 = 2097152
texels or 217 = 131072 tiles.

Large Cache
Non-tiled Tiled

No memoization 136.9 ms 0.000% 136.9 ms 0.000%
No eviction 41.0 ms 79.449% 35.0 ms 79.486%
Random 26.3 ms 99.733% 20.5 ms 99.824%
LRW frame 25.0 ms 99.820% 20.6 ms 99.841%
LRU frame 22.9 ms 99.892% 19.9 ms 99.877%
LRW counter 25.7 ms 99.861% 21.0 ms 99.894%
LRU counter 24.0 ms 99.894% 20.4 ms 99.918%

Small Cache
Non-tiled Tiled

No memoization 136.9 ms 0.000% 136.9 ms 0.000%
No eviction 57.3 ms 73.834% 49.2 ms 74.311%
Random 29.6 ms 92.447% 23.8 ms 96.313%
LRW frame 50.5 ms 86.808% 125.4 ms 77.864%
LRU frame 28.5 ms 92.229% 125.6 ms 77.922%
LRW counter 30.6 ms 90.851% 25.2 ms 96.205%
LRU counter 29.3 ms 90.729% 25.1 ms 96.205%
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Figure 6.14: Hit rate (left) and frame times (right) over time in the Landscape scene with
and without eviction. Times are in milliseconds per frame. Without eviction,
the hit rate declines quickly as the cache is filled with entries that are no
longer relevant.
Note: The frame times were smoothed slightly to reduce random fluctuation
and show the overall trend better.
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Table 6.3: Median frame times and hit rates for different cache sizes in two different scenes
and in the tiled and non-tiled variant. Times are in milliseconds per frame. The
cache size is the number of cache entries. In the tiled variant, each cache entry
is a 4 × 4 tile.

Non-Tiled Tiled
Size Classroom Landscape Classroom Landscape
None 136.9 ms 0.00% 42.0 ms 0.00% 136.9 ms 0.000% 42.0 ms 0.00%
210 212.1 ms 48.70% 48.1 ms 12.53% 286.1 ms 57.28% 69.3 ms 30.61%
211 159.0 ms 58.80% 44.7 ms 15.56% 184.4 ms 66.76% 59.0 ms 48.17%
212 96.1 ms 66.66% 44.1 ms 17.12% 108.6 ms 76.76% 42.8 ms 80.47%
213 60.7 ms 73.03% 44.5 ms 20.57% 51.0 ms 91.39% 31.4 ms 95.39%
214 42.4 ms 81.68% 43.9 ms 36.28% 27.2 ms 95.78% 30.7 ms 96.26%
215 32.7 ms 88.10% 41.3 ms 62.91% 25.1 ms 96.20% 30.5 ms 96.31%
216 29.6 ms 89.88% 37.4 ms 84.25% 24.4 ms 96.30% 30.7 ms 96.32%
217 28.4 ms 90.21% 34.7 ms 89.52% 24.1 ms 96.34% 30.6 ms 96.38%
218 27.8 ms 90.36% 34.4 ms 89.90% 23.4 ms 96.98% 28.8 ms 98.41%
219 28.3 ms 90.44% 34.9 ms 89.94% 20.3 ms 99.92% 28.2 ms 99.97%
220 28.5 ms 90.49% 35.4 ms 89.96% 20.0 ms 99.98% 28.2 ms 99.98%
221 28.8 ms 90.73% 35.5 ms 90.71% - - - -
222 26.9 ms 97.50% 33.4 ms 97.58% - - - -
223 23.5 ms 99.89% 31.3 ms 99.88% - - - -
224 23.5 ms 99.91% 31.0 ms 99.90% - - - -

are most likely to have become irrelevant does not hold if only such a small timespan is
represented in the cache. If all entries in the linear probing range were written in the same
frame, the eviction strategy will always overwrite the first one.

Overall, I recommend using the least recently used strategy with an atomic counter. If the
cache is known to be sufficiently large (which depends on a variety of factors), one may
choose to use the frame counter approximation instead but the very small performance
improvement is hardly worth the risk of significantly worse performance if the cache is
too small. Random eviction is a valid option as well as it performs similarly to the other
strategies, is the easiest to implement, and doesn’t require an additional field in the cache
entry.

6.6 Effects of Cache Parameters on Performance
6.6.1 Cache Size

Choosing the cache size is a tradeoff between memory usage and performance. A bigger
cache allows cache entries to stay in the cache longer and to be reused more often. However,
graphics memory is limited and also needed for models, textures and the ray tracing
acceleration structure. I tested the effect of the cache size on the performance and hit
rate by rendering the same sequence of frames with cache sizes ranging from 210 = 1024
entries to 224 = 16777216 entries for the non-tiled variant and from 210 = 1024 4 × 4 tiles
to 220 = 1048576 4 × 4 tiles for the tiled variant. The results are shown in figure 6.15 and
listed in table 6.3.

Generally speaking, larger caches result in better performance as expected. In the Class-
room scene, a cache with only 212 = 4096 entries or tiles already improves the performance
compared to using no cache at all. In the Landscape scene, a larger cache of 215 = 32768
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Figure 6.15: Frame times and hit rate for different cache sizes in two different scenes and
in the tiled and non-tiled variant. Times are in milliseconds per frame. The
cache size is the number of cache entries. The red lines are the median frame
times without memoization. In the tiled variant, each cache entry is a 4 × 4
tile.
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Figure 6.16: Median frame times of different linear probing distances. Times are millisec-
onds per frame.

entries or 213 = 8192 tiles was necessary. Performance and hit rate improve significantly
with larger caches up to a certain point, then remain similar for a while and eventually
start improving again slightly for very large caches. Qualitatively, the curves are similar
in both scenes and variants. However, there are significant quantitative differences. The
Classroom scene benefits much more from the memoization than the Landscape scene. The
Landscape scene requires a larger cache than the Classroom scene to achieve similar hit
rates. This is likely because the Classroom scene is a relatively small closed room, which
limits the area covered by secondary hits, resulting in more reuse. Independently from
this effect, the same hit rate results in a significantly higher performance improvement in
the Classroom scene. One reason for this is that the Classroom scene has many different
materials while the Landscape scene has very few. Divergent branching into different ma-
terial graphs is a major problem in the classroom scene that is alleviated by memoization.
Another reason is that in an outdoor scene, many secondary rays hit the skybox. This
means that material graphs are less often evaluated at secondary hits where the evaluation
is more divergent than at primary hits.

6.6.2 Linear Probing Distance

When reading a cache entry, I search a limited section of the cache starting at the location
given by the hash of the key for an entry with a matching key. When writing an entry,
I iterate over the same section and use an eviction strategy to decide which entry will
be overwritten. The linear probing distance, i.e. the number of entries that I test for
each cache access affects the performance of the cache. A high linear probing distance
results in a lot of time being spent iterating over cache entries while a low one prevents
the eviction strategy from working effectively. I compared the performance of the linear
probing distances 1, 2, 4, 8 and 16 in the tiled and non-tiled variant. I used the least
recently used eviction strategy. The results are shown in figure 6.16.

In both variants, the best performance is achieved with a linear probing distance of eight
cache entries. Using a linear probing distance of one (i.e. no linear probing at all) is
significantly worse than any of the other values. The differences between the others are
relatively small.

6.6.3 Tile Size

The tile size in the tile-based variant affects performance in several ways. First, larger
tiles have the advantage that fewer tiles are used within a wave, which improves hardware
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Figure 6.17: Median frame times of different tile sizes. Times are milliseconds per frame.

cache locality. Second, calculating and writing a tile requires some per-tile operations.
Therefore, a few large tiles have less overhead than many small ones. Third, larger tiles
result in more unnecessarily computed and cached texels. Even when only a single texel
is needed, the entire tile must be computed and uses up space in the cache. Finally, when
bilinear interpolation is used, tiles must overlap by one texel. Larger tiles result in less
overlap. For example, a 3 × 3 tile only represents a 2 × 2 area in texture space when
bilinear interpolation is used, while a 5 × 5 tile represents a 4 × 4 area. This means that
3 × 3 tiles require 9

4 = 2.25 times the texels to cover a large area in texture space while
5 × 5 tiles only require 25

16 = 1.5625 times the texels.

My implementation supports any tile size below the number of lanes per wave (32 on
my RTX 4070 Ti). Larger tiles would require each lane to calculate multiple texels of a
single tile, which would further complicate the process of calculating and writing a tile. I
compared the performance of the tile sizes 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 5 and 8 × 4 using
both nearest-neighbor and bilinear interpolation. I set the cache size to approximately 224

texels for each run, i.e., I lowered the number of cache entries accordingly for bigger tiles
(for example, I used 222 2×2 tiles but only 220 4×4 tiles). The results are shown in figure
6.17.

Bigger tiles perform better with both interpolation methods. However, the differences are
small when nearest-neighbor interpolation is used and significantly bigger when bilinear
interpolation is used. 5 × 5, 6 × 5 and 8 × 4 tiles perform nearly identically.

6.7 Evaluation of Various Modifications of the Tiled Cache
I tried various small modifications of the tiled variant to further improve its performance.
These attempts were not successful. I documented the results in this section along with a
brief discussion of why they did not have the desired effect.

6.7.1 Grouping Missing Tiles by Material

I implemented an alternative way of calculating missing tiles that attempts to group miss-
ing tiles within a wave by material (section 5.4.4). If the tile size is small enough, my
system can calculate multiple tiles simultaneously by assigning their texels to different
lanes within the same wave. However, this only has an effect if the tiles have the same
material because the material graph evaluation would be divergent otherwise and would
therefore effectively still be performed sequentially. The modified algorithm changes the
order in which tiles are evaluated to ensure that as many of them as possible are evaluated
simultaneously.
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Figure 6.18: The red tile intersects the pixel rectangles of two waves. If these two waves
are executed in parallel and the tile is not already cached, they might both
have a cache miss, calculate the tile, and attempt to write it.

Using this modified algorithm did not improve performance. Testing it in the Classroom
scene with a tile size of 4 × 4 resulted in a very slight increase in frame times from 20.1 ms
to 20.3 ms, rather than a decrease. To investigate this, I logged the number of different
tiles per wave as well as the number of different materials per wave. Grouping 4 × 4 tiles
by material on a GPU with 32 lanes per wave can only have an effect for waves that
compute more than two tiles and more than one material. Around 6.6% of all waves
had any missing tiles to compute. Of these waves, 1.3% (0.086% of all waves) had more
than two tiles and 0.050% (0.0033% of all waves) had more than one distinct material.
The potential performance gain is therefore negligible and not worth the overhead of the
alternative algorithm.

6.7.2 Distributing Frame Rendering Over Multiple Passes

When multiple waves that are executed in parallel need the same tile and that tile is not
already cached, they all compute the tile but only one of them writes the result to the
cache. This can happen randomly and is difficult to avoid for secondary hits. Primary
rays are much less random. Each wave is responsible for calculating a small rectangle of
pixels. Waves whose rectangles are next to each other are more likely to be executed in
parallel but are also likely to compute the same missing tiles. Tile boundaries form a grid
in texture space that is usually not perfectly aligned with the screen-space grid of waves.
As a result, tiles often intersect multiple adjacent wave rectangles in screen space (figure
6.18). These redundant calculations are a potential performance problem.

To investigate how big of a problem it is in practice, I logged all tile calculations and then
counted the distinct tiles per frame. If the same tile is calculated multiple times in the
same frame, it was likely calculated redundantly by waves that were executed in parallel.
It is also possible that a tile was written, then evicted and then written again in a single
frame but that is unlikely because I used a large cache of 220 tiles and the least-recently-
used eviction strategy for this test. From the number of tiles computed in a frame and the
number of distinct tiles computed in a frame, I calculated the duplicate ratio, i.e. what
percentage of tiles has already been computed in the same frame. The median duplicate
ratio was 13.4%, which is concerningly high.

In an attempt to reduce this duplicate ratio, I created a variant of my path tracer that
calculates an image in multiple passes by dispatching the compute shader multiple times
per frame. Each pass calculates a subset of the pixels. I spread out the pixel rectangles of
the waves in such a way that they either only touch at corners or not at all (figure 6.19).
The former requires two passes, the latter four.

The two-pass variant reduced the median duplicate ratio drastically to 1.48%. The four-
pass variant reduced it further to 0.23%. Surprisingly, this had almost no effect on perfor-
mance and the small effect that it had was that rendering in a single pass was the fastest
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Figure 6.19: Distributing the calculation of a frame over two (left) or four (right) passes.
The rectangles represent waves (8 × 4 pixels on my GPU). The numbers
indicate in which pass a wave is executed.

and rendering in four passes was the slowest. The median time went up from 20.2 ms in the
single-pass variant to 20.5 ms in the two-pass variant and 20.7 ms in the four-pass variant.
At first, I suspected that rendering in multiple passes also has significant disadvantages
that simply cancel out the benefits. For example, spreading out the primary rays could
have reduced hardware cache hit rates. However, comparing the variants in the NVIDIA
Nsight Trace Profiler showed no major differences. It seems more likely that preventing
the redundant computations had almost no effect and that the slightly worse performance
is a consequence of cutting the problem into smaller units, which slightly hampers parallel
execution. The reason why the multi-pass variants do not perform better may be that they
only reduce redundant computations for primary hits. Tiles for primary hits are cheaper
to compute than for secondary hits because of a high degree of hardware cache locality
and because the tiles computed for the primary hits in a wave are likely to have the same
material, meaning that the graph evaluation is unlikely to be divergent.

Another attempt to solve the same problem was to do a “pre-pass” before rendering each
frame that traces a small subset of the paths traced for the entire frame. The idea is that
these paths already hit most of the relevant tiles needed to render the frame. Because the
paths are less dense, duplicate tiles are less likely in the pre-pass. This approach was not
successful either. I tested three different path densities for the pre-pass: one path for every
2 × 2 pixels, one for every 4 × 4 pixels and one for every 8 × 8 pixels. The median frame
times went up from 20.2 ms to 24.5 ms, 23.9 ms and 23.6 ms respectively. The reason
for the worse performance is that more paths are traced and that reducing the number of
duplicate tiles does not have the expected performance benefit.
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7. Conclusion

In this thesis, I explored material graph memoization in real-time path tracing in two
main variants and with various parameters and smaller variations. I showed that the
presented techniques significantly reduce the cost of using complex material graphs or
many different ones in a scene. This gives artists more freedom in how they build scenes
and design materials.

The tiled variant typically performs better than the non-tiled one. Despite this, I recom-
mend considering both variants in practice because the tiled variant has multiple limita-
tions compared to the non-tiled one. In the non-tiled variant, all vertex attributes are
available in the material graphs. In the tiled one, only the texture coordinates are directly
available while others are challenging to provide. This limits the creative freedom of artists
to some extent. Another problem is that the tiled variant requires a certain number of
lanes in a wave to be active when material graphs are evaluated so that all texels of a tile
can be computed. This may not be the case if memoization is added to an existing path
tracer. Even in a new path tracer written from the ground up, keeping lanes active is not
always an easy task and limits certain design decisions. In particular, the implicit branch-
ing of assigning different hit shaders to different instances cannot be used. Reactivating
inactive lanes for a section of a shader is technically conceivable but shading languages do
not yet provide this functionality. Finally, another minor disadvantage of the tiled variant
is that it is more complicated to implement while the non-tiled one is relatively simple.

When using the presented techniques in practice, I also recommend considering whether
caching both primary and secondary hits or only secondary hits is more appropriate for the
specific use case. Without mipmap bias, caching primary hits has a slight impact on image
quality. For secondary hits, the difference is usually unnoticeable. Caching only secondary
hits still provides relevant performance benefits compared to not using memoization at
all. Caching only secondary hits is also more convenient if rasterization is used instead of
primary rays. In that case, one would only implement memoization in the path tracer but
use classic material-specific fragment shaders for rasterization.

While I believe the presented techniques to already be useful in their current form, I see
multiple possible paths for further improvements. One limitation of my implementation
is that cached values must not depend on the view direction or the current time. On
the one hand, this makes sense because both limit reuse. On the other hand, when view
direction or time dependency do occur in material graphs, they are often used to modify
the texture coordinates before the rest of the graph is evaluated. The remaining graph
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then uses these modified coordinates. For example, parallax mapping applies a slight view-
dependent offset to create an illusion of depth and UV scrolling applies a time-dependent
offset for simple animations. The memoization system could be extended to perform
such computations before the cache lookup and only memoize the remaining graph. More
generally, applying memoization to well-suited subgraphs instead of the entire graph would
make the system more flexible.

I implemented generic eviction strategies like least-recently-used and demonstrated that
these work well in practice. However, even better eviction may be possible by using
additional knowledge such as camera and object motion. One could either extrapolate
the position of cameras and objects from the current frame or render with a delay of one
frame so that the exact positions for the next frame are already known. This could in
theory be used to predict the reuse of cache entries more accurately. However, especially
for secondary rays, it may be too difficult or expensive.

I explained and implemented bilinear interpolation for the tiled variant. However, trilinear
interpolation, i.e. interpolating between two mipmap levels would be desirable and is not
supported in my implementation. One possible implementation is to query the cache for
two tiles at different mipmap levels. Another is to always include two mipmap levels in
each tile, similar to the one texel overlap for bilinear interpolation.
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